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Abstract—We derive finite-blocklength bounds on the minimum
achievable energy per bit over a Gaussian unsourced multiple
access (UMA) channel in the presence of heterogeneous path-
loss conditions. We consider a setting in which the path loss
is known to the users, which enables the use of location-based
codebook partitioning [Çakmak et al., 2025]. Through numerical
simulations and a large-system analysis based on the replica
method, we quantify the performance gain of this strategy relative
to the conventional UMA approach in which all users employ a
common codebook.

I. INTRODUCTION

Massive machine-type communication (mMTC) is a rapidly
growing use-case in wireless networks due to the fast expansion
of Internet of Things (IoT) systems. mMTC is characterized by
sporadic, uplink-centered transmissions of short packets from a
high density of devices often operating under stringent energy-
efficiency requirements [1]. As first formalized in [2], the
mMTC problem has unique features, which makes it different
from the traditional multiple access channel (MAC). One key
difference is that, to capture the massiveness of the user
population, it is fundamental to assume that it is impossible
for the system to assign to each user a different codebook. The
resulting scenario, in which all users are equipped with the
same codebook, is commonly referred to in the literature as
unsourced multiple-access (UMA).

Finite-blocklength bounds on the minimum energy per bit for
the Gaussian UMA scenario were first obtained in [2], under
the assumption that all users are received at the same power.
These bounds have been recently improved and generalized to
different scenarios, including the case in which the number of
active users is random and unknown to the receiver [3] and the
case in which transmission occurs over a quasi-static multiple-
input multiple-output (MIMO) fading channel [4]. See [5] for
a recent review of the area. Furthermore, coding schemes
approaching these bounds have been designed. A particularly
promising approach [6]–[9] leverages the similarity of UMA
decoding and sparse signal recovery and relies on approximate
message passing (AMP) for message recovery. This strategy,
however, incurs a challenge when applied to realistic channel
models in which signals from different users are received at
different average-power levels because of path-loss effects.
Indeed, since in UMA it is, in general, not possible to establish
any association between the position of a user (and, hence, its
path loss) and the codeword the user will transmit, one is forced

to use at the AMP denoiser a diffuse prior, which involves an
averaging over all possible user positions.

This problem has been recently sidestepped in [10] via the
insightful observation that, in most cellular wireless networks,
an estimate of the path loss between users and base-stations can
be obtained at the users via the downlink control information
transmitted by the cellular base stations. This information can
be used in a UMA system as follows: in the system-design
phase, one quantizes the possible path loss values using a
pre-determined number Q of levels; then, one partitions the
codebook in Q subcodebooks. In the operational phase, each
user estimates its path loss, quantizes it, and uses the corre-
sponding subcodebook to transmit its message. This strategy,
referred in [10] as location-based codebook partitioning, allows
one to establish a link between transmitted codewords and
path loss, and results in a much more concentrated prior for
the AMP denoiser. As shown in [10] both theoretically and
experimentally, this yields better AMP decoder performance.

Contributions: The purpose of this paper is to assess
the effectiveness of location-based codebook partitioning via
finite-blocklength information-theoretic bounds similar to the
ones developed in [2]. For simplicity, we restrict our attention
to a toy-model version of the scenario considered in [10].
Specifically, we assume that the channel between each user and
a single-antenna receiver is modeled as a nonfading Gaussian
channel, with (deterministic) path loss that can take only two
different values, which we denote by g1 and g2, respectively.

For this setup, we derive finite-blocklength bounds on the
minimum energy per bit achievable when the codebook is
partitioned into two subcodebooks and each user selects the
subcodebook corresponding to its path loss. Furthermore, we
compare this achievability bound with those obtained when
all users select codewords from the same codebook, and
when the decoder employs successive interference cancellation.
Through numerical results, we show that the bound on the
minimum energy per bit achieved via location-based codebook
partitioning lies below the two alternative bounds. We also
present simulation results obtained by combining the coded
compressive sensing (CCS) coding scheme proposed in [8] with
the multisource-AMP decoder introduced in [10]. These results
exhibit a similar performance ordering.

To provide insights into the benefits of location-based code-
book partitioning, we finally present a large-system charac-
terization of the per-user probability of error (PUPE) via



replica analysis [11], in the regime where both the number
of users and the blocklength grow to infinity with a fixed ratio.
This (non-rigorous) large-system analysis reveals that, with
location-based codebook partitioning, the UMA large-system
performance can be characterized by analyzing two equivalent
scalar Gaussian channels with SNR proportional to g21 and
g22 , respectively. On the contrary, when a single codebook is
used, the relevant scalar channel is a fading channel, with
instantaneous fading value (not known to the receiver), taking
value in {g1, g2} with probability depending on the asymptotic
fraction of users experiencing path loss g1 and g2, respectively.

Notation: We denote system parameters by uppercase non-
italic letters, e.g., K. Uppercase italic letters, e.g., X , denote
scalar random variables and their realizations are in lowercase,
e.g., x. We also use Greek letters to denote random variables
when appropriate; such choices are stated explicitly. Vectors
are denoted likewise in boldface, e.g., a random vector X
and its realization x. We denote their ith entries as [X]i and
[x]i. We use a script font for random matrices, e.g., C , and
a sans-serif font for deterministic matrices, e.g., CCC. We denote
the n × n identity matrix by IIIn, and the all-zero vector by
0. The superscript T stands for transposition. We denote sets
with calligraphic letters, e.g., S, the set of integers {m, . . . , n},
m ≤ n, as [m : n], the set [1 : n] as [n], and the set of all size-k
subsets of A by

(A
k

)
. We denote the set of natural numbers by N

and the set of reals by R. We denote the real-valued Gaussian
vector distribution with mean µµµ and covariance matrix AAA by
N (µµµ,AAA), and the Bernoulli distribution with parameter p by
Ber(p). We denote convergence in distribution by D→. Finally,
x+ = max{0, x}; ⊗ denotes the Kronecker product; 1{·} is
the indicator function; diag(x1, . . . , xn) denotes the diagonal
matrix with (x1, . . . , xn) as the diagonal.

II. SYSTEM MODEL

We consider a stationary memoryless Gaussian UMA sce-
nario, in which Ka users transmit their messages to a receiver
over N channel uses. The users are assumed to be clustered
according to their path loss. Specifically, users within the same
cluster ℓ experience the same path loss gℓ. For simplicity, we
consider the case of 2 clusters. Our results can however be
readily generalized to an arbitrary finite number of clusters.
We focus on the impact of heterogeneous path loss, and do
not model small-scale fading. Let Xℓ,k ∈ RN be the signal
transmitted by the kth user in cluster ℓ. The received signal is

Y = g1

Ka1∑
k=1

X1,k + g2

Ka2∑
k=1

X2,k +Z (1)

where Ka1 and Ka2, with Ka1 + Ka2 = Ka, are the number
of active users that belong to clusters 1 and 2, respectively,
and Z ∼ N (0, IIIn) is the Gaussian noise, which is independent
of the transmitted signals. We consider the power constraint
∥Xℓ,k∥2 ≤ NP for all ℓ and k. We also assume that Ka,Ka1,
and Ka2 are fixed and known to the receiver. Finally, we assume
that each user has perfect knowledge of its path loss. As already
pointed out, this information can be obtained in practical

systems via the downlink control information transmitted by
cellular base stations.

For this channel, an (M,N,P, ϵ) UMA code with codebook
size M and codeword length N consists of

• two encoding functions fℓ : [M] → RN, ℓ ∈ {1, 2},
that produce the transmitted codeword Xℓ,k = fℓ(Wk),
satisfying the power constraint, of user k in cluster ℓ, for
a user message Wk uniformly distributed over [M];

• a decoding function g : RN →
(
[M]
Ka

)
that provides an

estimate Ŵ = {Ŵ1, . . . , Ŵ|Ŵ|} = g(Y ) of the list of
transmitted messages.

The decoding function satisfies the following constraint on the
PUPE:

Pe =
1

|Ŵ|

|Ŵ|∑
i=1

P[W̃i /∈ Ŵ] ≤ ϵ, (2)

where W̃ = {W̃1, . . . , W̃|W̃|} denotes the set of distinct ele-
ments of W = {W1, . . . ,WKa}. In (2), we use the convention
0/0 = 0 to circumvent the case |Ŵ| = 0.

The main difference between the definition of UMA coding
scheme just provided and the one originally provided in [2] is
that we allow the encoder to depend on the cluster. This allows
us to model location-based codebook partitioning.

III. RANDOM CODING BOUND

In this section, we first derive a random-coding achievability
bound on the PUPE achievable over the channel (1) that ex-
ploits location-based codebook partitioning. Then, we provide
in Section III-B two bounds for the case in which f1 = f2,
which we refer to as common codebook case. The first bound
relies on joint decoding, whereas the second bound relies on
interference cancellation.

A. Location-Based Codebook Partitioning

We assume that the codewords of each of the two codebooks
Cℓ = {Cℓ,m}Mm=1, ℓ ∈ {1, 2} are drawn independently (across
both ℓ and m) from a N (0,P′IIIN) distribution, for a fixed
P′ < P. To convey message Wk, an active user k in cluster ℓ
transmits Cℓ,Wk

, provided that ∥Cℓ,Wk
∥2 ≤ NP. Otherwise,

the user transmits the all-zero codeword. That is,

fℓ(Wk) = Cℓ,Wk
1
{
∥Cℓ,Wk

∥2 ≤ NP
}
. (3)

We consider a joint decoder, whose output is the set of
estimated messages Ŵ = Ŵ1 ∪ Ŵ2, where

(Ŵ1, Ŵ2) = arg min
W′

1,W
′
2⊂[M] : W′

1∩W′
2=∅,

|W′
1|=Ka1,|W′

2|=Ka2

∥Y − g1c1(W ′
1)− g2c2(W ′

2)∥

(4)
with cℓ(W ′) =

∑
w∈W′ Cℓ,w, ℓ ∈ {1, 2}.

An error analysis of this random-coding scheme yields the
following achievability bound.

Theorem 1 (Random-coding bound, location-based codebook
partitioning, joint decoding). Fix P′ < P. For the Gaussian



UMA channel (1) there exists an (M,N,P, ϵ) random-access
code for which

ϵ ≤
Ka∑
t=0

t

Ka
pt + p0 (5)

where

p0 = 1− M!

MKa(M −Ka)!
+ Ka

Γ(N2 ,
NP
2P′ )

Γ(N/2)
, (6)

pt =
∑

tMD1∈Tt

∑
tFP1∈Tt

∑
tAC1∈T ′

t,tMD1,tFP1

exp(−NE(t, tMD1, tFP1, tAC1)), (7)
E(t, tMD1, tFP1, tAC1)

= max
ρ1,ρ2,ρ3∈[0,1]

−ρ1ρ2ρ3(R1 +R2)

− ρ2ρ3(R3 +R4)− ρ3(R5 +R6)

+ E0(ρ1, ρ2, ρ3), (8)

R1 =
1

N
ln

(
Ka1 − tMD1

tAC1

)
, (9)

R2 =
1

N
ln

(
Ka2 − t+ tMD1

tAC1 + tMD1 − tFP1

)
, (10)

R3 =
1

N
ln

(
M −Ka

tFP1

)
, (11)

R4 =
1

N
ln

(
M −Ka − tFP1

t− tFP1

)
, (12)

R5 =
1

N
ln

(
Ka1

tMD1

)
, (13)

R6 =
1

N
ln

(
Ka2

t− tMD1

)
, (14)

E0(ρ1, ρ2, ρ3) = max
λ

ρ3ρ2a1 + ρ3a2 +
1

2
ln(1−2ρ3b), (15)

a1 =
ρ1
2

ln(1+2λκACP
′)+

1

2
ln(1+2µ1κFPP

′),

(16)

a2 =
1

2
ln(1 + 2µ2κMDP

′), (17)

b = λρ1ρ2 −
µ2

1 + 2µ2κMDP′ , (18)

µ1 =
λρ1

1 + 2λκACP′ , (19)

µ2 =
µ1ρ2

1 + 2µ1κFPP′ , (20)

κAC = (g21 + g22)(2tAC1 + tMD1−tFP1), (21)

κMD = g21tMD1 + g22(t− tMD1), (22)

κFP = g21tFP1 + g22(t− tFP1), (23)
Tt = [(t−Ka2)

+ : min{t,Ka1}], (24)
T ′
t,tMD1,tFP1

= [max{0, tFP1 − tMD1} :

min{Ka1 − tMD1,Ka2 − t+ tFP1}]. (25)

Proof. The proof follows similar steps as the proof of [2,
Th. 1], namely, a change of measure and a Gallager-type

error exponent analysis that makes use of Chernoff bound,
Gallager’s ρ-trick, and Gaussian statistics. One fundamental
difference compared to [2] is that the decoder, when analyzing
codewords received at power Pg22 , may put out a set of
messages, which we denote by WAC1, that are false positives
from the perspective of cluster 2, but happen to coincide
with the messages from cluster 1, and vice versa. We refer
to these messages as “accidentally correct” (AC) messages.
Compared to [2], this results in an additional union bound over
tAC1 = |WAC1| (see (7)). See Appendix B for details.

B. Common Codebook

We now consider the common codebook case C1 = C2 =
{C1, . . . ,CM}.

1) Joint Decoding: We first obtain a bound for the case of
joint decoding.

Corollary 1 (Random-coding bound, common codebook, joint
decoding). Fix P′ < P. For the Gaussian UMA channel (1),
there exists an (M,N,P, ϵ) random-access code for which ϵ is
bounded as in (5) with (21) replaced by

κAC = (g1 − g2)
2(2tAC1 + tMD1 − tFP1). (26)

Proof. The proof follows along the same lines as the proof of
Theorem 1, with the fundamental difference that the assump-
tion of common codebook causes an increase in κAC, which
represents the variance of a term related to the accidentally
corrected messages. See Appendix C.

2) Interference-Cancellation Decoding: Assume without
loss of generality that g1 ≥ g2. We now consider an
interference-cancellation decoder that operates by first decod-
ing messages from cluster 1 as

Ŵ1 = arg min
W′

1⊂[M ] : |W′
1|=Ka1

∥Y − g1c(W ′
1)∥ (27)

with c(W) =
∑

w∈W Cw, and then canceling the interference
from cluster 1 to decode messages coming from cluster 2 as

Ŵ2 = arg min
W′

2⊂[M ]\Ŵ1 : |W′
2|=Ka2

∥Y −g1c(Ŵ1)−g2c(W ′
2)∥. (28)

We state a random-coding bound for this strategy in the
following theorem.

Theorem 2 (Random-coding bound, common codebooks, inter-
ference-cancellation decoding). Fix P′ < P. For the Gaussian
UMA channel (1), there exists an (M,N,P, ϵ) random-access
code for which ϵ is bounded as in (5) with E0(ρ1, ρ2, ρ3)
replaced by

E0(ρ1, ρ2, ρ3) = max
λ1,λ2

(1
2
ρ1ρ2ρ3 ln det(III2 − 2ΣACUUUAC)

+
1

2
ρ2ρ3 ln det(III2 − 2ΣFPUUUFP)

+
1

2
ρ3 ln det(III2 − 2ΣMDUUUMD)

+
1

2
ln det(III2 − 2ΣZCUUUZC)

)
, (29)

ΣAC = diag(tAC1P
′, (tAC1 + tMD1 − tFP1)P

′), (30)



ΣFP = diag(tFP1P
′, (t− tFP1)P

′), (31)
ΣMD = diag(tMD1P

′, (t− tMD1)P
′), (32)

ΣZC = diag(1, (Ka2 − t+ tFP1 − tAC1)P
′), (33)

UUUAC =

[
u
(1)
AC u

(2)
AC

u
(2)
AC u

(3)
AC

]
, (34)

u
(1)
AC = −λ1g

2
1 − λ2g2(g2 − 2g1), (35)

u
(2)
AC = λ1g1(g1 − g2) + λ2g2(g2 − 2g1), (36)

u
(3)
AC = −λ1g1(g1 − 2g2)− λ2g2(g2 − 2g1), (37)

UUUFP = 2ρ1ΛFPQQQFP − ρ1

[
λ1g

2
1 λ2g1g2

λ2g1g2 λ2g
2
2

]
, (38)

QQQFP =

[
λ1g

2
1 − λ2g1g2 λ2g2(g1 − g2)

−λ1g1(g1−g2) + λ2g1g2 −λ2g2(g1−g2)

]
, (39)

ΛFP = QQQT
FP(Σ

−1
AC−2UUUAC)

−1, (40)
UUUMD = 2ρ2ΛMDQQQMD + 2ρ2ρ1ΛMMMMMM

− ρ2ρ1

[
λ1g

2
1 (λ1 + λ2)g1g2

(λ1 + λ2)g1g2 λ2g
2
2

]
, (41)

MMM = λ1g1g2

[
0 −1
0 1

]
−QQQFP, (42)

QQQMD = 2ρ1ΛFPMMM+ ρ1

[
λ1g

2
1 (λ1 + λ2)g1g2

λ2g1g2 λ2g
2
2

]
, (43)

ΛMD = QQQT
MD(Σ

−1
FP − 2UUUFP)

−1, (44)

ΛMMM =MMMT(Σ−1
AC − 2UUUAC)

−1, (45)

UUUZC = 2ρ3QQQ
T
ZC(Σ

−1
MD − 2UUUMD)

−1QQQZC

+ 2ρ3ρ2Λ
T
ZCa(Σ

−1
FP − 2UUUFP)

−1ΛZCa

+ 4ρ3ρ2ρ1Λ
T
ZCb(Σ

−1
AC − 2UUUAC)

−1ΛZCb, (46)

QQQZC = ρ2ρ1

(
− III2+(4ΛMDΛFP+2ΛMMM)

[
−1 1
1 −1

]
+2ΛMD

)
·
[
λ1g1 λ1g1g2
λ2g2 0

]
, (47)

ΛZCa = ρ1

(
III2 + 2ΛFP

[
−1 1
1 −1

])[
λ1g1 λ1g1g2
λ2g2 0

]
, (48)

ΛZCb =

[
−1 1
1 −1

] [
λ1g1 λ1g1g2
λ2g2 0

]
. (49)

Proof. The proof follows similar steps as the proof of Theo-
rem 1, with some extensions to capture the sequential nature of
the decoding operations (27) and (28). See Appendix D.

IV. REPLICA METHOD PREDICTION

To obtain insights on system performance, we provide next
a large-system limit characterization of the PUPE achievable
over the channel (1). To derive the result, we rely on the replica
method, in line with its application to multiuser detection
systems [12]–[14], and the original UMA problem [15].

To state the main results of this section, we first introduce
the following definition of multiuser spectral efficiency.

Definition 1. Let
B =

√
aA+N, (50)

with a > 0, A ∼ Ber(p), p ∈ (0, 1), and N ∼ N (0, 1).
Let I(a) denote the mutual information I(A;B) and let G
be a binary random variable taking values in {g1, g2} with
probability P[G = gℓ] = γℓ. Then, for every β > 0, the
multiuser efficiency η is defined as

η = argmin
x

(
β EG[I(xPG

2)] + 1
2 (x− 1− lnx)

)
. (51)

A. Location-Based Codebook Partitioning

We describe the random codebook corresponding to cluster ℓ
as a matrix Cℓ with M columns drawn independently from a
N (0, IIIN/N) distribution. For a fixed µ ∈ (0, 1), we consider
the regime in which the total number of active users satisfies
Ka = µN. In contrast to Section III, where each user inde-
pendently selects a message uniformly at random yielding a
message selection probability 1 − (1 − 1/M)Ka ≈ Ka/M, we
consider a setting in which, within each cluster ℓ with Kaℓ ac-
tive users, each message is selected independently according to
a Ber(Kaℓ/M) distribution. Let αℓ = Kaℓ/Ka and β = 2M/N.
Furthermore, let U ′

ℓ denote an M×1 vector with entries drawn
independently from a Ber(αℓµ/β) distribution, representing
message selection in cluster ℓ. Let finally Z ′ ∼ N (0, IIIN).
We analyze the large-system performance of location-based
codebook partitioning achievable over the channel

Y ′ =
√
Pg1C1U

′
1 +

√
Pg2C2U

′
2 +Z ′. (52)

We have the following result.

Claim 1 (Replica decoupling, location-based codebook parti-
tioning). Let ℓ ∈ {1, 2}. Fix pℓ = αℓµ/β, and γℓ = 1/2.
Denote by

V ′
ℓ,N = P[[U ′

ℓ]1 = 1 | Y ′,C1,C2] (53)

the marginal posterior probability associated with (52). Con-
sider also the following scalar channels for ℓ ∈ {1, 2}:

Bℓ =
√
PηgℓAℓ +Nℓ. (54)

Here, Aℓ ∼ Ber(pℓγℓ), and Nℓ ∼ N (0, 1), independent of Aℓ.
Let M,N,Ka → ∞ with β, µ, and αℓ held constant. Then,

V ′
ℓ,N

D−→ P[Aℓ = 1 | Bℓ]. (55)

Proof. The proof follows from [14, Prop. 1]. See for details.

Remark 1. Claim 1 implies that, in the large-system limit, the
channel (52) decouples into the two scalar channels in (54).
Note in particular that the two scalar channels have determin-
istic path losses known to the receiver. Following an approach
similar to the one detailed in [15], we can use these two
scalar channels to obtain a large-system characterization of
the PUPE. Specifically, let ϵℓ be the solution of√

Pηgℓ = Q−1(ϵℓ) +Q−1(pℓγℓϵℓ/(1− pℓγℓ)). (56)

In the large-system limit, the PUPE is given by (ϵ1 + ϵ2)/2.



B. Common Codebook

We denote the common codebook as a matrix C with M
columns drawn independently from a N (0, IIIN/N) distribution.
We let µ and αℓ to be defined as before, but set now β = M/N,
and use a Ber(Ka/M) distribution for message selection. Note
that Ka/M = µ/β. Let U ′′ be the binary vector describing
the message selection. Let also G be a random variable taking
values in {g1, g2} with P[G = gℓ] = αℓ. Finally, let Z ′′ ∼
N (0, IIIN). We analyze the large-system performance achievable
over the channel

Y ′′ =
√
PGCU ′′ +Z ′′. (57)

We have the following result.

Claim 2 (Replica decoupling, common codebook). Let
ℓ ∈ {1, 2}. Fix p = µ/β, and γℓ = αℓ. Denote by

V ′′
N = P[[U ′′]1 = 1 | Y ′′,C ′′] , (58)

the marginal posterior probability associated with (57). Con-
sider the scalar channel

B′′ =
√

PηGA′′ +N ′′. (59)

Here, A′′ ∼ Ber(p), G takes values in {g1, g2} with
P[G = gℓ] = αℓ, and N ′′ ∼ N (0, 1). Furthermore, these three
random variables are mutually independent. Let M,N,Ka →
∞ with β, µ, and αℓ held constant. Then,

V ′′
N

D−→ P[A′′ = 1 | B′′]. (60)

Proof. The proof follows from [13, Claim 1]. See for details.

Remark 2. Note that, in contrast to the previous case, the
equivalent scalar channel in the common codebook case is a
single fading channel, with fading coefficient G not known to
the receiver. The large-system characterization of the PUPE for
this scenario can again be carried out along the lines of [15].
However, the presence of G precludes a closed-form expression.
Specifically, in the large-system limit, the PUPE is given by

ϵ =
1− p

p
P1

[
ln

dP0

dP1
≥ θ

]
(61)

where θ is determined by imposing that

P0

[
ln

dP0

dP1
≥ θ

]
+

1− p

p
P1

[
ln

dP0

dP1
≥ θ

]
= 1. (62)

Here, P0 = N (0, 1) and P1 = γ1N (g1, 1) + γ2N (g2, 1).

V. NUMERICAL RESULTS

We evaluate the minimum energy per bit NP/(2B) required
to achieve a PUPE of 0.01 as a function of the number of active
users Ka for the case in which each user map messages of
B = 128 bits to codewords of length N = 30 000. Throughout,
we set g1 = 1, g2 = 0.8, and Ka2 = 2Ka1. In Fig. 1, we depict
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Fig. 1. Minimum energy per bit to achieve target PUPE of 0.01 vs. number
of active users Ka.

the random-coding bound with location-based codebook parti-
tioning in Theorem 1 as well as those corresponding to com-
mon codebook with joint decoding (Corollary 1) and common
codebook with interference-cancellation decoding (Theorem 2).
In the figure, we also depict the replica method predictions,
obtained via the expressions given in Remark 1 and Remark 2.
We also use the normalization with respect to the effective
number of bits suggested in [15]. Finally, we provide simulation
results for a CCS scheme [8] in which the decoder operates
according to the multisource-AMP framework proposed in [10].
Specifically, in the resulting scheme, each message is divided
into 16 blocks of 16 bits each. The CCS inner decoder per-
forms multisource-AMP signal reconstruction, while the outer
decoder stitches together the reconstructed signals, to ensure
that they form valid codewords. To do so, we assume that the
inner decoder produces a list of candidate messages of size
Ka + 10.

As shown in the figure, for the channel model considered
in the paper, location-based codeword partitioning results in
a consistent reduction of the minimum energy per bit (al-
though this reduction is marginal when Ka is small) across all
types of curves depicted in the figure (random-coding bounds,
replica-method predictions, performance of CCS schemes).
Note also that, for the scenario considered in this section, i.e.,
Ka2 = 2Ka1 with g2 < g1, interference cancellation exhibits
poor performance (6 dB gap from the location-based codeword
partitioning bound for Ka = 12).

VI. CONCLUSION

For a Gaussian UMA channel characterized by heteroge-
neous path loss, we showed that location-based codebook
partitioning outperforms, in terms of the minimum energy per
bit required to meet a specific PUPE, the conventional UMA
framework, which utilizes a common codebook for all users.
These gains were validated through finite-blocklength random
coding bounds, replica method large-system limit predictions,
and empirical performance of a coding scheme based on CCS
and multisource-AMP.



We anticipate that the energy efficiency gains from location-
based codebook partitioning will be even more pronounced
in wireless network architectures featuring distributed access
points (distributed MIMO). Indeed, in such systems, the ac-
cess points are located so as to ensure uniform quality of
service, which should amplify the benefit of the location-based
codebook partitioning, as illustrated in [10] for the case of
multisource-AMP decoders. Such extension, as well as the
inclusion of small-scale fading will be considered in future
works.
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APPENDIX A
MATHEMATICAL PRELIMINARIES FOR THE RANDOM

CODING BOUNDS

The following results will be used in the proofs of Theo-
rems 1, and 2.

Lemma 1 (Change of measure [16, Lemma 4]). Let p and q
be two probability measures. Consider a random variable X
supported on H and a function f : H → [0, 1]. It holds that

Ep[f(X)] ≤ Eq[f(X)] + dTV(p, q) (63)

where dTV(p, q) denotes the total variation distance between
p and q.

Lemma 2 (Chernoff bound [17, Th. 6.2.7]). For a random
variable X with moment-generating function E[etX ] defined
for all |t| ≤ b, it holds for all λ ∈ [0, b] that

P[X ≤ x] ≤ eλx E[e−λX ]. (64)

Corollary 2 (Chernoff joint bound). For two random vari-
ables X1 and X2 with joint moment-generating function
E[et1X1+t2X2 ] defined for all |t1| ≤ b1 and |t2| ≤ b2, it holds
for all λ1 ∈ [0, b1], λ2 ∈ [0, b2] that

P[X1 ≤ x1, X2 ≤ x2] ≤ eλ1x1+λ2x2 E[e−λ1X1−λ2X2 ]. (65)

Lemma 3 (Gallager’s ρ-trick [18, p. 136]). It holds that
P[∪iAi] ≤ (

∑
i P[Ai])

ρ for every ρ ∈ [0, 1].

Lemma 4 (Moment-generating function of quadratic forms of
a Gaussian vector). Let X ∈ RN and X ∼ N (µµµ,Σ). Let
AAA ∈ RN×N be a symmetric matrix and b ∈ RN. For every
γ ∈ R such that Σ−1 + 2γAAA ≻ 0, it holds that

E[exp(−γ(XTAAAX + 2bTX))]

= det(IIIN + 2γΣAAA)−1/2

· exp
(
2γ2(AAAµµµ+ b)T(Σ−1 + 2γAAA)−1(AAAµµµ+ b)

− γ(µµµTAAAµµµ+ 2bTµµµ)
)
. (66)

In particular, for γ = −1 and µµµ = 0, it holds that

E[exp(XTAAAX + 2bTX)]

= det(IIIN − 2ΣAAA)−1/2 exp
(
2bT(Σ−1 − 2AAA)−1b), (67)

given that Σ−1 ≻ 2AAA; for Σ = σ2IIIN, AAA = IIIN, and b = 0, it
holds that

E[e−γ∥X∥2

] = (1 + 2γσ2)−N/2 exp

(
− γ∥µµµ∥2

1 + 2γσ2

)
, (68)

for every γ > − 1
2σ2 .

Proof. Denote the quadratic form as Q = XTAAAX + 2bTX .
Using the density of X ∼ N (µµµ,Σ), we compute E[e−γQ] as

E[e−γQ] =
1

(2π)N/2 det(Σ)1/2

·
∫
Rn

exp
(
− 1

2 (x−µµµ)TΣ−1(x−µµµ)− γxTAAAx− 2γbTx
)
dx.

(69)

We define KKK = Σ−1 + 2γAAA and h = Σ−1µµµ− 2γb. Since Σ−1

and AAA are symmetric, KKK is symmetric. The exponent on the
right-hand side of (69) becomes − 1

2x
TKKKx+hTx− 1

2µµµ
TΣ−1µµµ.

Hence,

E
[
e−γQ

]
=

exp
(
− 1

2µµµ
TΣ−1µµµ

)
(2π)n/2 det(Σ)1/2

·
∫
Rn

exp
(
− 1

2
xTKKKx+ hTx

)
dx. (70)

Under the condition that KKK is positive definite, the standard
Gaussian integral identity yields∫

Rn

exp
(
− 1

2
xTKKKx+ hTx

)
dx

= (2π)n/2 det(KKK)−1/2 exp
(1
2
hTKKK−1h

)
. (71)

Substituting this into (70) gives

E
[
e−γQ

]
= det(Σ)−1/2 det(KKK)−1/2

· exp
(
− 1

2
µµµTΣ−1µµµ+

1

2
hTKKK−1h

)
, (72)

which leads to (66) after some simplifications of the determi-
nant and exponent terms. The particular cases (67) and (68)
follow straightforwardly from (66).

APPENDIX B
PROOF OF THEOREM 1

We analyze the PUPE achieved with the random-coding
scheme introduced in Section III-A, averaged over the Gaussian
code ensemble. We denote by Wℓ the set of messages trans-
mitted by users in cluster ℓ ∈ {1, 2}, and define (Ŵ1, Ŵ2) as
in (4). Furthermore, we denote by WMD the set of misdetected
messages, i.e., WMD = W̃ \ Ŵ , and by WFP the set of false-
positive messages, i.e., WFP = Ŵ \ W̃ . The PUPE can be
expressed as

Pe = E

[
|WMD|
|W̃|

]
. (73)

A. Change of Measure

We apply Lemma 1 to the random variable |WMD|
|W̃|

to replace
the measure under which the expectation is taken by the one
under which: i) the active users transmit distinct messages, i.e.,
|W̃| = Ka and W̃1, . . . , W̃Ka

are sampled uniformly without
replacement from [M]; ii) Xℓ,k = Cℓ,Wk

, ∀ℓ, k, instead of
Xℓ,k = Cℓ,Wk

1{∥Cℓ,Wk
∥ ≤ NP}. The total variation between

the original measure and the new one is upper-bounded by

P
[
|W̃| < Ka

]
+ P[∃k ∈ [Ka] : ∥Cℓ,Wk

∥ ≥ NP ]

≤ 1− M!

MKa(M −Ka)!
+ Ka

Γ(N/2,NP/(2P′))

Γ(N/2)
(74)

= p0. (75)

The inequality (74) follows from the same analysis as in [3,
App. A-A]. We consider implicitly the new measure hereafter
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Fig. 2. A diagram depicting the relation between the sets of messages.

at a cost of adding p0 to the original expectation in (73).
Specifically, we expand this expectation as

Pe ≤
Ka∑
t=0

t

Ka
P[|WMD| = |WFP| = t] + p0, (76)

and next focus on upper-bounding P[|WMD| = |WFP| = t]
under the new measure.

B. Message Sets

We further split the sets of misdetected messages, false-
positive messages, and correctly decoded messages, as depicted
in Fig. 2. We first split WMD into two sets WMD1 and WMD2
that contain the misdetected messages of users in clusters
1 and 2, respectively. Similarly, we split WFP into WFP1
and WFP2. Recall that the decoded sets of messages for
clusters 1 and 2 are Ŵ1 and Ŵ2, respectively. We denote
WAC1 = W1 ∩ Ŵ2, which is the set of messages that are
false positives from the perspective of cluster 2 but happen
to coincide with messages transmitted by cluster 1. We refer
to these messages as “accidentally correct” messages (hence
the subscript AC). Similarly, we denote the set of accidentally
correct messages for cluster 2 as WAC2 = W2 ∩ Ŵ1. Finally,
we denote the sets of other correctly decoded messages as
WC1 = Ŵ1 \WMD1 \WAC1 and WC2 = Ŵ2 \WMD2 \WAC2.

Exploiting symmetry, we assume without loss of generality
that W̃ = [Ka], W̃1 = [Ka1], and thus W̃2 = [Ka1 + 1 : Ka].
Denote the cardinality of the message sets as tMD1 = |WMD1|,
tFP1 = |WFP1|, tAC1 = |WAC1|, and tAC2 = |WAC2|. Under
the event |WMD| = |WFP| = t, we have that |WMD2| = t −
tMD1 and |WFP2| = t−tFP1. As W1 = WC1∪WAC1∪WMD1,
Ŵ1 = WC1 ∪ WAC2 ∪ WFP1, and |W1| = |Ŵ1| = Ka1, we
obtain that

tFP1 + tAC2 = tMD1 + tAC1 = Ka1 − tC1 ≤ Ka1. (77)

Similarly, we have that

tFP2 + tAC1 = tMD2 + tAC2 = Ka2 − tC2 ≤ Ka2. (78)

Therefore, given t, tMD1 is upper-bounded by both t and Ka1,
and lower-bounded as tMD1 = t − tMD2 ≥ t − Ka2. That is,

tMD1 is bounded in Tt defined in (24). Similarly, so is tFP1.
Furthermore, given tMD1 and tFP1, tAC1 belongs to the set
T ′
t,tMD1,tFP1

defined in (25).

C. Pairwise Error Event

We express the received signal as

Y = g1[c1(WMD1) + c1(WAC1) + c1(WC1)]

+ g2[c2(WMD2) + c2(WAC2) + c2(WC2)] +Z. (79)

Furthermore, the sums of the codewords corresponding to the
decoded message sets (Ŵ1, Ŵ2) are expressed as

c1(Ŵ1) = c1(WFP1) + c1(WAC2) + c1(WC1), (80)

c2(Ŵ2) = c2(WFP2) + c2(WAC1) + c2(WC2). (81)

The pairwise error event W̃ → Ŵ occurs when

∥Y − g1c1(Ŵ1)− g2c2(Ŵ2)∥ < ∥Z∥. (82)

Using (79), (80), and (81), we obtain that (82) is equivalent to

∥Z + g1c1(WMD1) + g2c2(WMD2)

− g1c1(WFP1)− g2c2(WFP2)

+ g1c1(WAC1)− g2c2(WAC1)

− g1c1(WAC2) + g2c2(WAC2)∥ ≤ ∥Z∥. (83)

We denote by F (WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2}) the set of
(WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2}) such that (83) holds.

D. Error-Exponent Analysis

By writing the event |WMD| = |WFP| = t as a union of the
pairwise error events F (WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2}), we
have that

P[|WMD| = |WFP| = t]

= P

[ ⋃
tMD1∈Tt

⋃
tFP1∈Tt

⋃
tAC1∈T ′

t,tMD1,tFP1⋃
WMD1⊂( [Ka1]

tMD1
)

⋃
WMD2⊂([Ka1+1:Ka]

t−tMD1
)⋃

WFP1⊂([Ka+1:M]
tFP1

)

⋃
WFP2⊂([Ka+1:M]\WFP1

t−tFP1
)⋃

WAC1⊂([Ka1]\WMD1
tAC1

)

⋃
WAC2⊂([Ka1+1:Ka]\WMD2

tAC1+tMD1−tFP1
)

F (WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2})

]
(84)

≤
∑

tMD1∈Tt

∑
tFP1∈Tt

∑
tAC1∈T ′

t,tMD1,tFP1

P

[ ⋃
WMD1⊂( [Ka1]

tMD1
)

⋃
WMD2⊂([Ka1+1:Ka]

t−tMD1
)⋃

WFP1⊂([Ka+1:M]
tFP1

)

⋃
WFP2⊂([Ka+1:M]\WFP1

t−tFP1
)



⋃
WAC1⊂([Ka1]\WMD1

tAC1
)

⋃
WAC2⊂([Ka1+1:Ka]\WMD2

tAC1+tMD1−tFP1
)

F (WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2})

]
. (85)

Given cℓ(WMDℓ), cℓ(WFPℓ), ℓ ∈ {1, 2}, and Z, it holds for
every λ > 0 that

P
[
F (WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2})

]
≤ exp(λ∥Z∥2)EWAC1,WAC2

[
exp(−λ∥Z

+ g1c1(WMD1) + g2c2(WMD2)

− g1c1(WFP1)− g2c2(WFP2) + g1c1(WAC1)

− g2c2(WAC1)− g1c1(WAC2) + g2c2(WAC2)∥2)
]

(86)

= exp(λ∥Z∥2)(1 + 2λ(g21 + g22)(tAC1 + tAC2)P
′)−N/2

· exp
(
− λ∥Z + g1c1(WMD1) + g2c2(WMD2)

− g1c1(WFP1)− g2c2(WFP2)∥2)
· (1 + 2λ(g21 + g22)(tAC1 + tAC2)P

′)−1
)
, (87)

where we have applied the Chernoff bound in Lemma 2 in (86)
and then used (66) in Lemma 4 to compute the expectation.
Note that (g21 + g22)(tAC1 + tAC2) is equal to κAC defined
in (21). Next, we apply Gallager’s ρ-trick in Lemma 3 to get
that, given cℓ(WMDℓ), cℓ(WFPℓ), ℓ ∈ {1, 2}, and Z, it holds
for every ρ1 ∈ [0, 1] that

P

[ ⋃
WAC1⊂([Ka1]\WMD1

tAC1
)

⋃
WAC2⊂([Ka1+1:Ka]\WMD2

tAC1+tMD1−tFP1
)

F (WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2})

]

≤
(
Ka1 − tMD1

tAC1

)ρ1
(
Ka −Ka1 − t+ tMD1

tAC1 + tMD1 − tFP1

)ρ1

· (1 + 2λκACP
′)−Nρ1/2

· exp
(
µ1

(
∥Z∥2 − ∥Z + g1c1(WMD1) + g2c2(WMD2)

− g1c1(WFP1)− g2c2(WFP2)∥2
))

where µ1 is defined by (19). By taking the expectation over
WFP1 and WFP2 using (66) in Lemma 4, we obtain that, for
given cℓ(WMDℓ), ℓ ∈ {1, 2}, and given Z,

P

[ ⋃
WAC1⊂([Ka1]\WMD1

tAC1
)

⋃
WAC2⊂([Ka1+1:Ka]\WMD2

tAC1+tMD1−tFP1
)

F (WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2})

]

≤
(
Ka1 − tMD1

tAC1

)ρ1
(
Ka −Ka1 − t+ tMD1

tAC1 + tMD1 − tFP1

)ρ1

· exp
(
λρ1∥Z∥2−µ1∥Z + g1c1(WMD1) + g2c2(WMD2)∥2

· (1 + 2µ1(g
2
1tFP1 + g22tFP2)P

′)−1 −Na1

)
(88)

where

a1 =
ρ1
2

ln(1 + 2λκACP
′)

+
1

2
ln
(
1 + 2µ1(g

2
1tFP1 + g22tFP2)P

′). (89)

Note that g21tFP1 + g22tFP2 is equal to κFP defined in (23).
Now we apply Gallager’s ρ-trick again to obtain that,
given cℓ(WMDℓ), cℓ(WFPℓ), ℓ ∈ {1, 2}, given Z and for every
ρ2 ∈ [0, 1],

P

[ ⋃
WFP1⊂([Ka+1:M]

tFP1
)

⋃
WFP2⊂([Ka+1:M]\WFP1

t−tFP1
)⋃

WAC1⊂([Ka1]\WMD1
tAC1

)

⋃
WAC2⊂([Ka1+1:Ka]\WMD2

tAC1+tMD1−tFP1
)

F (WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2})

]
(90)

≤
(
M −Ka

tFP1

)ρ2
(
M −Ka − tFP1

t− tFP1

)ρ2

·
(
Ka1 − tMD1

tAC1

)ρ1ρ2
(
Ka −Ka1 − t+ tMD1

tAC1 + tMD1 − tFP1

)ρ1ρ2

· Ec1(WMD1),c2(WMD2)

[
exp

(
λρ1ρ2∥Z∥2

− µ2∥Z + g1c1(WMD1) + g2c2(WMD2)∥2 −Nρ2a1

)]
(91)

=

(
M −Ka

tFP1

)ρ2
(
M −Ka − tFP1

t− tFP1

)ρ2

·
(
Ka1 − tMD1

tAC1

)ρ1ρ2
(
Ka −Ka1 − t+ tMD1

tAC1 + tMD1 − tFP1

)ρ1ρ2

· (1 + 2µ2(g
2
1tMD1 + g22tMD2)P

′)−N/2

· exp
((

λρ1ρ2 −
µ2

1 + 2µ2(g21tMD1 + g22tMD2)P′

)
∥Z∥2

−Nρ2a1

)
(92)

=

(
M −Ka

tFP1

)ρ2
(
M −Ka − tFP1

t− tFP1

)ρ2

·
(
Ka1 − tMD1

tAC1

)ρ1ρ2
(
Ka −Ka1 − t+ tMD1

tAC1 + tMD1 − tFP1

)ρ1ρ2

· exp(b∥Z∥2 −Nρ2a1 −Na2), (93)

where we used (66) in Lemma 4 to obtain the first equality,
and we define µ2 by (20) and

b = λρ1ρ2 −
µ2

1 + 2µ2(g21tMD1 + g22tMD2)P′ , (94)

a2 =
1

2
ln
(
1 + 2µ2(g

2
1tMD1 + g22tMD2)P

′). (95)

Note that g21tMD1 + g22tMD2 is equal to κMD defined in (22).
We now apply Gallager’s ρ-trick the third time to obtain that,
given Z and for every ρ3 ∈ [0, 1],

= P

[ ⋃
WMD1⊂( [Ka1]

tMD1
)

⋃
WMD2⊂([Ka1+1:Ka]

t−tMD1
)



⋃
WFP1⊂([Ka+1:M]

tFP1
)

⋃
WFP2⊂([Ka+1:M]\WFP1

t−tFP1
)⋃

WAC1⊂([Ka1]\WMD1
tAC1

)

⋃
WAC2⊂([Ka1+1:Ka]\WMD2

tAC1+tMD1−tFP1
)

F (WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2})

]
(96)

≤
(
Ka1

tMD1

)ρ3
(

Ka2

t− tMD1

)ρ3

·
(
M −Ka

tFP1

)ρ2ρ3
(
M −Ka − tFP1

t− tFP1

)ρ2ρ3

·
(
Ka1 − tMD1

tAC1

)ρ1ρ2ρ3
(
Ka −Ka1 − t+ tMD1

tAC1 + tMD1 − tFP1

)ρ1ρ2ρ3

· EZ [exp(b∥Z∥2 −Nρ2ρ3a)−Nρ3a1)] (97)

=

(
Ka1

tMD1

)ρ3
(

Ka2

t− tMD1

)ρ3

·
(
M −Ka

tFP1

)ρ2ρ3
(
M −Ka − tFP1

t− tFP1

)ρ2ρ3

·
(
Ka1 − tMD1

tAC1

)ρ1ρ2ρ3
(
Ka −Ka1 − t+ tMD1

tAC1 + tMD1 − tFP1

)ρ1ρ2ρ3

· (1− 2bρ3)
−N/2 exp(−Nρ2ρ3a1 −Nρ3a2), (98)

where in the last equality, we use (66) in Lemma 4 to compute
the expectation over Z.

We conclude that P |WMD| = |WFP| = t is upper-bounded
by the right-hand side of (98). We complete the proof by
substituting this bound into (76).

APPENDIX C
PROOF OF COROLLARY 1

When C1 = C2, we have that c1(W) = c2(W) for a given
message set W . The proof follows the same steps detailed
in Appendix B, except that, in (87), the covariance matrix of
g1c1(WAC1) − g2c2(WAC1) − g1c1(WAC2) + g2c2(WAC2) is
given by κACP

′IIIN with κAC defined in (26).

APPENDIX D
PROOF OF THEOREM 2

By performing the same change of measure as in Ap-
pendix B, we obtain the bound (76). We next focus on upper-
bounding P |WMD| = |WFP| = t under the new measure and
for the interference-cancellation decoder.

A. Pairwise Error Event

For this decoder, the pairwise error event W̃ → Ŵ implies
that

∥Y − g1c(Ŵ1)∥ ≤ ∥Y − g1c(W1)∥, (99)

∥Y −g1c(Ŵ1)−g2c(Ŵ2)∥ ≤ ∥Y −g1c(Ŵ1)−g2c(W2)∥
(100)

where we recall that c(W) =
∑

w∈W Cw. Splitting message
sets as in Appendix B, we express (99) and (100) as

∥Z + g1c(WMD1) + g2c(WMD2)− g1c(WFP1) + g2c(WC2)︸ ︷︷ ︸
=A

+ g1c(WAC1) + (g2 − g1)c(WAC2)∥
≤ ∥Z + g2c(WC2) + g2c(WMD2)︸ ︷︷ ︸

=B

+g2c(WAC2)∥, (101)

∥Z + g1c(WMD1) + g2c(WMD2)− g1c(WFP1)− g2c(WFP2)︸ ︷︷ ︸
=C

+ (g1 − g2)(c(WAC1)− c(WAC2))∥
≤ ∥Z + g1c(WMD1)− g1c(WFP1)︸ ︷︷ ︸

=D

+ g1c(WAC1)− g1c(WAC2)∥, (102)

where we also defined the vectors A, B, C, D to
make the notation more compact in the following. We de-
note by FIC(WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2}) the set of
(WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2}) such that (101) and (102)
hold. Note that WC2 is fully determined given W̃ = [Ka1+1 :
Ka], WMD2, and WAC2. By writing the event |WMD| =
|WFP| = t as a union of the pairwise error events, we obtain
a similar bound as in (85) with F (WMDℓ,WFPℓ,WACℓ, ℓ ∈
{1, 2}) replaced by FIC(WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2}).

B. Error Exponent Analysis

We apply the Chernoff joint bound in Corollary 2 to bound
the pairwise error probability as

P[FIC(WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2})]

= P
[
∥A+ g1c(WAC1) + (g2 − g1)c(WAC2)∥2

− ∥B + g2c(WAC2)∥2 ≤ 0,

∥C + (g1 − g2)(c(WAC1)− c(WAC2))∥2

− ∥D + g1c(WAC1)− g1c(WAC2)∥2 ≤ 0
]

(103)

≤ E
[
exp

(
− λ1(∥A+ g1c(WAC1) + (g2 − g1)c(WAC2)∥2

− ∥B + g2c(WAC2)∥2)
− λ2(∥C + (g1 − g2)(c(WAC1)− c(WAC2))∥2

− ∥D + g1c(WAC1)− g1c(WAC2)∥2)
)]

(104)

for all λ1 > 0 and λ2 > 0.
1) Expectation over c(WAC1) and c(WAC2) and the First

Gallager-ρ Trick: The exponent in (104) can be written as

[c(WAC1)
T c(WAC2)

T](UUUAC ⊗ IIIN)

[
c(WAC1)
c(WAC2)

]
+ 2V T

AC

[
c(WAC1)
c(WAC2)

]
+RAC (105)

where

UUUAC =

[
u
(1)
AC u

(2)
AC

u
(2)
AC u

(3)
AC

]
, (106)



u
(1)
AC = −λ1g

2
1 − λ2g2(g2 − 2g1), (107)

u
(2)
AC = λ1g1(g1 − g2) + λ2g2(g2 − 2g1), (108)

u
(3)
AC = −λ1g1(g1 − 2g2)− λ2g2(g2 − 2g1), (109)

VAC =

[
−λ1g1A− λ2(g1 − g2)C + λ2g1D

λ1(g1−g2)A+λ1g2B +λ2(g1−g2)C −λ2g1D

]
,

(110)

RAC = −λ1(∥A∥2 − ∥B∥2)− λ2(∥C∥2 − ∥D∥2). (111)

Note that
[
c(WAC1)
c(WAC2)

]
∼ N (0,ΣAC ⊗ IIIN) with ΣAC =

diag(tAC1P
′, tAC2P

′). We apply (67) in Lemma 4 to compute
the expectation in (104) over c(WAC1), c(WAC2) as

det(III2 − 2ΣACUUUAC)
−N/2

· exp
(
2V T

AC[(Σ
−1
AC − 2UUUAC)

−1 ⊗ IIIN]VAC +RAC
)

(112)

where we require λ1, λ2 to satisfy that Σ−1
AC ≻ 2UUUAC.

Now, we apply Gallager’s ρ-trick in Lemma 3 to get that,
given c(WMDℓ), c(WFPℓ), ℓ ∈ {1, 2}, c(WC2), and Z, it holds
for every ρ1 ∈ [0, 1] that

P

[ ⋃
WAC1⊂([Ka1]\WMD1

tAC1
)

⋃
WAC2⊂([Ka1+1:Ka]\WMD2

tAC1+tMD1−tFP1
)

FIC(WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2})

]

≤
(
Ka1 − tMD1

tAC1

)ρ1
(
Ka −Ka1 − t+ tMD1

tAC1 + tMD1 − tFP1

)ρ1

· det(III2 − 2ΣACUUUAC)
−Nρ1/2

· exp
(
2ρ1V

T
AC[(Σ

−1
AC − 2UUUAC)

−1 ⊗ IIIN]VAC + ρ1RAC
)
.

(113)

2) Expectation over c(WFP1) and c(WFP2) and the Second
Gallager-ρ Trick: Next, we denote

E = Z + g1c(WMD1) + g2c(WMD2) + g2c(WC2), (114)
F = Z + g1c(WMD1) + g2c(WMD2), (115)
G = Z + g1c(WMD1). (116)

It follows that A = E − g1c(WFP1), C = F − g1c(WFP1)−
g2c(WFP2), and D = G − g1c(WFP1). We can express the
exponent in (113) as

2ρ1V
T
AC[(Σ

−1
AC − 2UUUAC)

−1 ⊗ IIIN]VAC + ρ1RAC

= [c(WFP1)
T c(WFP2)

T](UUUFP ⊗ IIIN)

[
c(WFP1)
c(WFP2)

]
+ 2V T

FP

[
c(WFP1)
c(WFP2)

]
+RFP (117)

where

UUUFP = 2ρ1ΛFPQQQFP − ρ1

[
λ1g

2
1 λ2g1g2

λ2g1g2 λ2g
2
2

]
, (118)

VFP = 2ρ1[ΛFP ⊗ IIIN]QFP

+ ρ1

[
λ1g1E + λ2g1F − λ2g1G

λ2g2F ,

]
, (119)

RFP = 2ρ1Q
T
FP
[
(Σ−1

AC − 2UUUAC)
−1 ⊗ IIIN

]
QFP

− ρ1λ1(∥E∥2 − ∥B∥2)− ρ1λ2(∥F ∥2 − ∥G∥2),
(120)

with

QQQFP =

[
λ1g

2
1 − λ2g1g2 λ2g2(g1 − g2)

−λ1g1(g1 − g2) + λ2g1g2 −λ2g2(g1 − g2)

]
,

(121)

QFP =

[
−λ1g1E − λ2(g1 − g2)F + λ2g1G

λ1(g1−g2)E + λ1g2B + λ2(g1−g2)F − λ2g1G

]
,

(122)

ΛFP = QQQT
FP(Σ

−1
AC−2UUUAC)

−1. (123)

Note that
[
c(WFP1)
c(WFP2)

]
∼ N (0,ΣFP ⊗ IIIN) with ΣFP =

diag(tFP1P
′, tFP2P

′). By applying (67) in Lemma 4 to com-
pute the expectation of (113) over c(WFP1), c(WFP2), we
obtain that, given c(WMDℓ), ℓ ∈ {1, 2}, c(WC2), and Z,

P

[ ⋃
WAC1⊂([Ka1]\WMD1

tAC1
)

⋃
WAC2⊂([Ka1+1:Ka]\WMD2

tAC1+tMD1−tFP1
)

FIC(WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2})

]

≤
(
Ka1 − tMD1

tAC1

)ρ1
(
Ka −Ka1 − t+ tMD1

tAC1 + tMD1 − tFP1

)ρ1

· det(III2 − 2ΣACUUUAC)
−Nρ1/2

· det(III2 − 2ΣFPUUUFP)
−N/2

· exp
(
2V T

FP[(Σ
−1
FP − 2UUUFP)

−1 ⊗ IIIN]VFP +RFP
)

(124)

under the condition that Σ−1
FP ≻ 2UUUFP.

Now, we apply Gallager’s ρ-trick again to get that,
given c(WMDℓ), ℓ ∈ {1, 2}, c(WC2), and Z, and for every
ρ2 ∈ [0, 1], it holds that

P

[ ⋃
WFP1⊂([Ka+1:M]

tFP1
)

⋃
WFP2⊂([Ka+1:M]\WFP1

t−tFP1
)⋃

WAC1⊂([Ka1]\WMD1
tAC1

)

⋃
WAC2⊂([Ka1+1:Ka]\WMD2

tAC1+tMD1−tFP1
)

FIC(WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2})

]
(125)

≤
(
M −Ka

tFP1

)ρ2
(
M −Ka − tFP1

t− tFP1

)ρ2

·
(
Ka1 − tMD1

tAC1

)ρ1ρ2
(
Ka −Ka1 − t+ tMD1

tAC1 + tMD1 − tFP1

)ρ1ρ2

· det(III2 − 2ΣACUUUAC)
−Nρ1ρ2/2

· det(III2 − 2ΣFPUUUFP)
−Nρ2/2

· exp
(
2ρ2V

T
FP[(Σ

−1
FP − 2UUUFP)

−1 ⊗ IIIN]VFP + ρ2RFP
)
.

(126)



3) Expectation over c(WMD1) and c(WMD2) and the Third
Gallager-ρ Trick: We express the exponent in (126) as

2ρ2V
T
FP[(Σ

−1
FP − 2UUUFP)

−1 ⊗ IIIN]VFP + ρ2RFP

= [c(WMD1)
T c(WMD2)

T](UUUMD ⊗ IIIN)

[
c(WMD1)
c(WMD2)

]
(127)

+ 2V T
MD

[
c(WMD1)
c(WMD2)

]
+RMD (128)

where

UUUMD = 2ρ2ΛMDQQQMD + 2ρ2ρ1ΛMMMMMM

− ρ2ρ1

[
λ1g

2
1 (λ1 + λ2)g1g2

(λ1 + λ2)g1g2 λ2g
2
2

]
, (129)

MMM =

[
−λ1g

2
1 + λ2g1g2 −λ1g1g2−λ2g2(g1−g2)

λ1g1(g1−g2)−λ2g1g2 λ1g1g2 + λ2g2(g1−g2)

]
,

(130)

QQQMD = 2ρ1ΛFPMMM+ ρ1

[
λ1g

2
1 (λ1 + λ2)g1g2

λ2g1g2 λ2g
2
2

]
, (131)

VMD = 2ρ2(ΛMD ⊗ IIIN)QMD + 2ρ2ρ1(ΛMMM ⊗ IIIN)M

− ρ2ρ1R, (132)
QMD = 2ρ1(ΛFP ⊗ IIIN)M + ρ1R, (133)

M =

([
1 −1
−1 1

]
⊗ IIIN

)
R, (134)

R =

([
λ1g1 λ1g1g2
λ2g2 0

]
⊗ IIIN

)[
Z

c(WC2)

]
, (135)

RMD = 2ρ2Q
T
MD[(Σ

−1
FP − 2UUUFP)

−1]QMD

+ 4ρ1ρ2M
T(Σ−1

AC − 2UUUAC)
−1M , (136)

with

ΛMD = QQQT
MD(Σ

−1
FP − 2UUUFP)

−1, (137)

ΛMMM =MMMT(Σ−1
AC − 2UUUAC)

−1. (138)

Note that
[
c(WMD1)
c(WMD2)

]
∼ N (0,ΣMD ⊗ IIIN) with ΣMD =

diag(tMD1P
′, tMD2P

′). By applying (67) in Lemma 4 to com-
pute the expectation of (126) over c(WMD1), c(WMD2), we
obtain that, given c(WC2) and Z,

P

[ ⋃
WFP1⊂([Ka+1:M]

tFP1
)

⋃
WFP2⊂([Ka+1:M]\WFP1

t−tFP1
)⋃

WAC1⊂([Ka1]\WMD1
tAC1

)

⋃
WAC2⊂([Ka1+1:Ka]\WMD2

tAC1+tMD1−tFP1
)

FIC(WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2})

]

≤
(
Ka1 − tMD1

tAC1

)ρ1
(
Ka −Ka1 − t+ tMD1

tAC1 + tMD1 − tFP1

)ρ1

· det(III2 − 2ΣACUUUAC)
−Nρ1ρ2/2

· det(III2 − 2ΣFPUUUFP)
−Nρ2/2

· det(III2 − 2ΣMDUUUMD)
−N/2

· exp
(
2V T

MD[(Σ
−1
MD − 2UUUMD)

−1 ⊗ IIIN]VMD +RMD
)

(139)

under the condition that Σ−1
FP ≻ 2UUUFP.

We now apply Gallager’s ρ-trick the third time to obtain that,
given c(WC2) and Z, and for every ρ3 ∈ [0, 1],

= P

[ ⋃
WMD1⊂( [Ka1]

tMD1
)

⋃
WMD2⊂([Ka1+1:Ka]

t−tMD1
)⋃

WFP1⊂([Ka+1:M]
tFP1

)

⋃
WFP2⊂([Ka+1:M]\WFP1

t−tFP1
)⋃

WAC1⊂([Ka1]\WMD1
tAC1

)

⋃
WAC2⊂([Ka1+1:Ka]\WMD2

tAC1+tMD1−tFP1
)

FIC(WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2})

]
(140)

≤
(
Ka1

tMD1

)ρ3
(

Ka2

t− tMD1

)ρ3

·
(
M −Ka

tFP1

)ρ2ρ3
(
M −Ka − tFP1

t− tFP1

)ρ2ρ3

·
(
Ka1 − tMD1

tAC1

)ρ1ρ2ρ3
(
Ka −Ka1 − t+ tMD1

tAC1 + tMD1 − tFP1

)ρ1ρ2ρ3

· det(III2 − 2ΣACUUUAC)
−Nρ1ρ2ρ3/2

· det(III2 − 2ΣFPUUUFP)
−Nρ2ρ3/2

· det(III2 − 2ΣMDUUUMD)
−Nρ3/2

· exp
(
2ρ3V

T
MD[(Σ

−1
MD − 2UUUMD)

−1 ⊗ IIIN]VMD + ρ3RMD
)
.

(141)

4) Expectation over Z and c(WC2): We express the expo-
nent in (141) as

2ρ3V
T
MD[(Σ

−1
MD − 2UUUMD)

−1 ⊗ IIIN]VMD + ρ3RMD

= [ZT c(WC2)
T](UUUZC ⊗ IIIN)

[
Z

c(WC2)

]
(142)

where

UUUZC = 2ρ3QQQ
T
ZC(Σ

−1
MD − 2UUUMD)

−1QQQZC

+ 2ρ3ρ2Λ
T
ZCa(Σ

−1
FP − 2UUUFP)

−1ΛZCa

+ 4ρ3ρ2ρ1Λ
T
ZCb(Σ

−1
AC − 2UUUAC)

−1ΛZCb (143)

with

QQQZC = ρ2ρ1

(
− III2 + (4ΛMDΛFP + 2ΛMMM)

[
−1 1
1 −1

]
+ 2ΛMD

)
·
[
λ1g1 λ1g1g2
λ2g2 0

]
, (144)

ΛZCa = ρ1

(
III2 + 2ΛFP

[
−1 1
1 −1

])[
λ1g1 λ1g1g2
λ2g2 0

]
,

(145)

ΛZCb =

[
−1 1
1 −1

] [
λ1g1 λ1g1g2
λ2g2 0

]
. (146)



Note that
[

Z
c(WC2)

]
∼ N (0,ΣZC ⊗ IIIN) with ΣZC =

diag(1, (Ka2−tMD2−tAC2)P
′). By applying (67) in Lemma 4

to compute the expectation of (126) over Z and c(WC2), we
obtain that

= P

[ ⋃
WMD1⊂( [Ka1]

tMD1
)

⋃
WMD2⊂([Ka1+1:Ka]

t−tMD1
)⋃

WFP1⊂([Ka+1:M]
tFP1

)

⋃
WFP2⊂([Ka+1:M]\WFP1

t−tFP1
)⋃

WAC1⊂([Ka1]\WMD1
tAC1

)

⋃
WAC2⊂([Ka1+1:Ka]\WMD2

tAC1+tMD1−tFP1
)

FIC(WMDℓ,WFPℓ,WACℓ, ℓ ∈ {1, 2})

]
(147)

≤
(
Ka1

tMD1

)ρ3
(

Ka2

t− tMD1

)ρ3

·
(
M −Ka

tFP1

)ρ2ρ3
(
M −Ka − tFP1

t− tFP1

)ρ2ρ3

·
(
Ka1 − tMD1

tAC1

)ρ1ρ2ρ3
(
Ka −Ka1 − t+ tMD1

tAC1 + tMD1 − tFP1

)ρ1ρ2ρ3

· det(III2 − 2ΣACUUUAC)
−Nρ1ρ2ρ3/2

· det(III2 − 2ΣFPUUUFP)
−Nρ2ρ3/2

· det(III2 − 2ΣMDUUUMD)
−Nρ3/2

· det(III2 − 2ΣZCUUUZC)
−N/2, (148)

which is an upper-bound for P |WMD| = |WFP| = t. Finally,
by substituting this bound into (76) and rearranging the terms,
we complete the proof.

APPENDIX E
MATHEMATICAL PRELIMINARIES FOR REPLICA ANALYSIS

We will make use of the definitions and results presented in
this section for the proofs of Claim 1 and Claim 2. We will
consider a generic channel model

Ỹ = C̃ Ũ (0) + Z̃ (149)

where Ỹ , Z̃ ∈ RN, Ũ (0) is a random (column) vector of
length m′, C̃ ∈ RN×m′

, C̃ has i.i.d. N (0, 1/N) entries, Z̃ ∼
N (0, IIIN), and will specialize the value of m′ along with the
definition of Ũ (0), to prove each claim. We fix β = m′/N.

First, we introduce the definition of the partition function.

Definition 2 (Partition Function). Fix positive integers ℓ and r,
and a real number t. Let {Ũ (i), i ≥ 1} be an i.i.d. process,
where Ũ (i) D

= Ũ (0). Then, the partition function is defined as

ζ(r)(t; Ỹ , C̃ ) = E

et ℓ∏
i=1

[Ũ(i)]1
r∏

j=1

P
[
Ỹ | Ũ (j), C̃

]∣∣∣∣∣∣Ỹ , C̃

 .

(150)

We have the following result.

Assumption 1 (Replica Trick for Moment Calculation). Let

κ(t, r) = logEỸ ,C̃

[
ζ(r)(t; Ỹ , C̃ )

]
(151)

denote the cumulant of the partition function in (150). Then,
the ℓth moment of the random variable

VN = P
[
[Ũ (0)]1 = 1|Ỹ , C̃

]
(152)

is given by

EỸ ,C̃

[
V ℓ
N

]
= lim

r→0
lim
t→0

d

dt
κ(t, r). (153)

Remark 3. In applying the replica trick in Assumption 1,
we will compute in closed form E[ζ(r)] for r ∈ N. We will
then assume that the result holds for every r ∈ R. This is
a common practice in the application of the replica method
(see [12] for such an application in the context of multiuser
communication). A rigorous justification involves finding a
unique analytic continuation of E[ζ(r)] from the set of positive
integers to the entire real line; see, for instance, the discussion
in [19].

Lemma 5. (Gaussian Integral Identity) Fix a positive integer r.
For i ∈ [0 : r], define

Wi =

√
P

MN

M∑
m=1

[C̃ ]m[Ũ (i)]m. (154)

Then, ∫
EC̃

 r∏
j=0

e−
(y−

√
βWj)

2

2

 dy√
2π

= eG
(r)(Q) (155)

where

G(r)(Q) = −1

2
log det(IIIr+1 + ΣQ)− 1

2
log (1 + r)

− r

2
log(2π). (156)

Here, Σ and Q are (r+1)× (r+1) matrices with the (i, j)th
entry given by β

(
1{i = j}− 1

r+1

)
and E[WiWj ], respectively.

The following lemma is used to evaluate the limiting value
of the logarithm of the moment-generating function that arises
in the analysis.

Lemma 6. (Varadhan’s Integral Lemma, Theorem 4.3.1 [20])
Suppose that measures {µn, n ≥ 1} satisfy the large deviation
principle with a good rate function I : X 7→ [0,∞] (see [20,
Section 1.2]), and let ϕ : X 7→ R be a continuous function,
where X is a regular, topological space. Assume that, for some
γ > 1,

lim sup
n→∞

logE
[
e

γϕ(Zn)
n

]
n

< ∞. (157)



Then,

lim sup
n→∞

logE
[
e

γϕ(Zn)
n

]
n

= sup
x∈X

(ϕ(x)− I(x)). (158)

Lemma 7 (Moment convergence implies convergence in dis-
tribution [21, Theorem 30.2]). Let {Xn}n≥1 be a sequence
of real-valued random variables and X a real-valued random
variable. Suppose that:

1) For every integer k ≥ 1, the kth moment E[Xk
n] exists for

all sufficiently large n.
2) For every integer k ≥ 1,

lim
n→∞

E[Xk
n] = E[Xk].

3) The distribution of X is uniquely determined by its
moments (equivalently, Carleman’s condition [21, Theo-
rem 30.1] is satisfied).

Then Xn converges in distribution to X , i.e.,

Xn
D−→ X.

APPENDIX F
PROOF OF CLAIM 1

The proof follows the line of treatment outlined in Appendix
G. The key difference involves modifying the definition of Wi

in Lemma 5 to√
Pg21
MN

M∑
m=1

[C̃ (1)]m[Ũ
(i)
1 ]m +

√
Pg22
MN

2M∑
m=M+1

[C̃ (2)]m[Ũ
(i)
2 ]m

(159)

in conducting the central limit theorem analysis. Here, C̃ (i) D
=

C̃ , C̃ (1) and C̃ (2) are independent, and Ũ
(i)
ℓ has i.i.d.

Ber(αℓµ/β) entries. The rest of the proof is handled as in
the proof of Proposition 1 in [14], which is built along the
lines outlined in Appendix G.

APPENDIX G
PROOF OF CLAIM 2

To establish the convergence in distribution of the random
variables VN, by Lemma 7, it suffices to show that the moments
converge, i.e., E[V ℓ

N] → E[V ℓ] for all positive integers ℓ. To
compute these moments, we invoke the replica method stated
in Assumption 1.

The expectation of the partition function can be expressed
as

EỸ ,C̃

[
ζ(r)(t; Ỹ , C̃)

]
= E

∫ e
t

ℓ∏
i=1

[Ũ(i)]1
Pr
[
ỹ|Ũ , C̃

] r∏
j=1

Pr
[
ỹ|Ũ (j), C̃

]
dỹ


(160)

= E

∫ e
t

ℓ∏
i=1

[Ũ(i)]1
(2π)−

n(r+1)
2

r∏
j=0

e−
∥ỹ−C̃Ũj∥

2

2 dỹ

 . (161)

We observe that, since the channel is memoryless, and the
codebook C̃ is i.i.d., the integrals over each of the coordinate
of ỹ are identical. Using this observation, we can express (161)
as follows:

E
[
ζ(r)(t; Ỹ , C̃)

]
=

E

[
e
t

ℓ∏
i=1

Ũ
(i)
1

{
(2π)−

r
2

∫
EC̃

[
r∏

j=0

e−
(ỹ−

√
PC̃T Ũ(i))

2

2

]
dỹ√
2π

}N]
.

(162)

We define Wi as in Lemma 5. Using the central limit theorem,
Edgeworth expansion as argued in [12, Appendix B], and
invoking Lemma 5, we conclude that

E
[
ζ(r)(t; Ỹ , C̃ )

]
= E

et ℓ∏
i=1

[Ũ ]
(i)
1 +G(r)(Q)+O(M−1)

 (163)

where G(r)(Q) is as defined in (156). We can further use
Lemma 6 to obtain

lim
M→∞

logE
[
ζ(r)(t; Ỹ , C̃ )

]
= sup

Q

[
1

β
G(r)(Q)− I(r)(t;Q)

]
(164)

where

I(r)(t;Q) = sup
Q̃

[
Tr(Q̃Q)− logM (r)(Q̃)

]
(165)

is the rate function corresponding to the measure

E

[
r∏

i=0

∏
j≤i

δ

(
M∑

m=1

[Ũ (i)]m[Ũ (j)]m − MQ

P

)
et

∏ℓ
k=1[Ũ

(k)]1

]
(166)

and Q is defined in Lemma 5. Also,

M (r)(Q̃) = E

[
exp

(
t

ℓ∏
i=1

[Ũ (i)]1

)
eU ′⊤Q̃U ′

]
(167)

where U ′ = [[Ũ (0)]1, . . . , [Ũ
(r)]1]

⊤ .
We next substitute (165) to (164), which yield the following

optimization problem.

sup
Q

inf
Q̃

[
1

β
G(r)(Q)− Tr(Q̃Q) + logM (r)(Q̃)

]
. (168)

Let

T (r)(Q, Q̃) =− 1

2β
log det(IIIr + ΣQ)− Tr(Q̃Q)

+ logE
[
eU ′T Q̃U ′

]
− 1

2β
log (1 + r)

− r

2β
log(2π). (169)

Fix a Q. Then, the infimum with respect to Q̃ satisfies

Q =
E
[
U ′U ′⊤eU ′⊤Q̃U ′

]
E
[
eU ′⊤Q̃U ′

] . (170)



Let the solution of (170) be Q̃∗(Q). By defining the expecta-
tion with respect to the tilted measure

µ(Q̃) =
eU ′⊤Q̃U ′

E
[
eU ′⊤Q̃U ′

] (171)

we can rewrite (170) as

Q = E
[
U ′U ′⊤∣∣Q̃] . (172)

Now, with Q̃ = Q̃∗(Q), the supremum of the function
T (r)(Q, Q̃∗(Q)) satisfies

Q̃ = − (IIIr + ΣQ)−1Σ

β
. (173)

Equations (170) and (173) together form saddle point equa-
tions.

Now, we assume that the solutions of the saddle point
equations satisfy some symmetry assumption. Such a symmetry
assumption is referred to as the replica symmetry assumption.
The work of [13], among others, make such a symmetry
assumption to solve the saddle point equations. Specifically,
in our case, we will assume that the joint solutions to (170)
and (173) have the following structure:

Q∗ =


p q q · · · q
q p q · · · q
q q p · · · q
...

...
...

. . .
...

q q q · · · p


(r+1)×(r+1)

(174)

Q̃∗ =


g f f · · · f
f g f · · · f
f f g · · · f
...

...
...

. . .
...

f f f · · · g


(r+1)×(r+1)

. (175)

Under replica symmetry assumption,

G(r)(Q∗) = −r

2
log(2π)− r − 1

2
log (1 + β(p− q))

− 1

2
log (1 + β(p− q) + r(p− q)) . (176)

Next, we evaluate the moment generating function M (r)(Q̃∗)
as

M (r)(Q̃∗) = E
[
e(

∑r
i=0[Ũ ]i)

2
f+(g−f)

∑r
i=0[Ũ ]2i

]
(177)

which can be expressed as

M (r)(Q̃∗) =

E

[√
f

π

∫
e−fu2+(2f

∑r
i=0[Ũ ]i)u+(g−f)

∑r
i=0[Ũ ]2i du

]
.

(178)

Now, the rate function admits the form

I(r)(Q∗) = (r + 1)(pg + rqf)

− logE

[∫ √
f

π
E
[
e−f(−(u−[U ]0)

2+g[U ]20)
]

·
(
E
[
e2f [U ]1+(g−f)[U ]21

])r
du

]
(179)

Next, using the replica trick, we obtain

− lim
M→∞

E
[
1

M
log ζ(r)(t; Ỹ , C̃)

]
= − lim

M→∞

1

M
lim
r→0

d

dt

[
β−1G(r)(Q∗)− I(r)(t; Q̃∗)

] ∣∣∣∣∣
t=0

.

(180)

Using (173), we conclude that

f =
1

2(1 + β(p− q))
(181)

and
g = 0. (182)

To establish convergence to the limiting random variable, we
next express the parameters above in terms of the correspond-
ing conditional expectations. This analysis follows the approach
outlined in [13], leading to relationships analogous to those
in [13, eq. (132)–(135)]. Carleman’s condition for moment
determinacy [21, Chapter 30, Theorem 30.1], are satisfied as
the random variables involved are bounded in [0, 1]. These
together prove the convergence in distribution to a limiting
random variable. The expression for the limiting random vari-
able involves calculation of the parameter by solving the final
resultant saddle point equation

1

η
= 1 + PβE

[(
[Ũ ]1 − E

[
[Ũ ]1|

√
P[Ũ ]1 +

1
√
η
N

])2
]

(183)
with N ∼ N (0, 1), and η = d2/f .
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