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Abstract—We derive finite-blocklength bounds on the minimum
achievable energy per bit over a Gaussian unsourced multiple
access (UMA) channel in the presence of heterogeneous path-
loss conditions. We consider a setting in which the path loss
is known to the users, which enables the use of location-based
codebook partitioning [Cakmak et al., 2025]. Through numerical
simulations and a large-system analysis based on the replica
method, we quantify the performance gain of this strategy relative
to the conventional UMA approach in which all users employ a
common codebook.

I. INTRODUCTION

Massive machine-type communication (mMTC) is a rapidly
growing use-case in wireless networks due to the fast expansion
of Internet of Things (IoT) systems. mMTC is characterized by
sporadic, uplink-centered transmissions of short packets from a
high density of devices often operating under stringent energy-
efficiency requirements [1]. As first formalized in [2], the
mMTC problem has unique features, which makes it different
from the traditional multiple access channel (MAC). One key
difference is that, to capture the massiveness of the user
population, it is fundamental to assume that it is impossible
for the system to assign to each user a different codebook. The
resulting scenario, in which all users are equipped with the
same codebook, is commonly referred to in the literature as
unsourced multiple-access (UMA).

Finite-blocklength bounds on the minimum energy per bit for
the Gaussian UMA scenario were first obtained in [2], under
the assumption that all users are received at the same power.
These bounds have been recently improved and generalized to
different scenarios, including the case in which the number of
active users is random and unknown to the receiver [3] and the
case in which transmission occurs over a quasi-static multiple-
input multiple-output (MIMO) fading channel [4]. See [5] for
a recent review of the area. Furthermore, coding schemes
approaching these bounds have been designed. A particularly
promising approach [6]-[9] leverages the similarity of UMA
decoding and sparse signal recovery and relies on approximate
message passing (AMP) for message recovery. This strategy,
however, incurs a challenge when applied to realistic channel
models in which signals from different users are received at
different average-power levels because of path-loss effects.
Indeed, since in UMA it is, in general, not possible to establish
any association between the position of a user (and, hence, its
path loss) and the codeword the user will transmit, one is forced

to use at the AMP denoiser a diffuse prior, which involves an
averaging over all possible user positions.

This problem has been recently sidestepped in [10] via the
insightful observation that, in most cellular wireless networks,
an estimate of the path loss between users and base-stations can
be obtained at the users via the downlink control information
transmitted by the cellular base stations. This information can
be used in a UMA system as follows: in the system-design
phase, one quantizes the possible path loss values using a
pre-determined number () of levels; then, one partitions the
codebook in () subcodebooks. In the operational phase, each
user estimates its path loss, quantizes it, and uses the corre-
sponding subcodebook to transmit its message. This strategy,
referred in [10] as location-based codebook partitioning, allows
one to establish a link between transmitted codewords and
path loss, and results in a much more concentrated prior for
the AMP denoiser. As shown in [10] both theoretically and
experimentally, this yields better AMP decoder performance.

Contributions: The purpose of this paper is to assess
the effectiveness of location-based codebook partitioning via
finite-blocklength information-theoretic bounds similar to the
ones developed in [2]. For simplicity, we restrict our attention
to a toy-model version of the scenario considered in [10].
Specifically, we assume that the channel between each user and
a single-antenna receiver is modeled as a nonfading Gaussian
channel, with (deterministic) path loss that can take only two
different values, which we denote by g; and gs, respectively.

For this setup, we derive finite-blocklength bounds on the
minimum energy per bit achievable when the codebook is
partitioned into two subcodebooks and each user selects the
subcodebook corresponding to its path loss. Furthermore, we
compare this achievability bound with those obtained when
all users select codewords from the same codebook, and
when the decoder employs successive interference cancellation.
Through numerical results, we show that the bound on the
minimum energy per bit achieved via location-based codebook
partitioning lies below the two alternative bounds. We also
present simulation results obtained by combining the coded
compressive sensing (CCS) coding scheme proposed in [8] with
the multisource-AMP decoder introduced in [10]. These results
exhibit a similar performance ordering.

To provide insights into the benefits of location-based code-
book partitioning, we finally present a large-system charac-
terization of the per-user probability of error (PUPE) via



replica analysis [11], in the regime where both the number
of users and the blocklength grow to infinity with a fixed ratio.
This (non-rigorous) large-system analysis reveals that, with
location-based codebook partitioning, the UMA large-system
performance can be characterized by analyzing two equivalent
scalar Gaussian channels with SNR proportional to g7 and
g3, respectively. On the contrary, when a single codebook is
used, the relevant scalar channel is a fading channel, with
instantaneous fading value (not known to the receiver), taking
value in {g1, g2} with probability depending on the asymptotic
fraction of users experiencing path loss g; and gs, respectively.

Notation: We denote system parameters by uppercase non-
italic letters, e.g., K. Uppercase italic letters, e.g., X, denote
scalar random variables and their realizations are in lowercase,
e.g., . We also use Greek letters to denote random variables
when appropriate; such choices are stated explicitly. Vectors
are denoted likewise in boldface, e.g., a random vector X
and its realization x. We denote their ith entries as [X]; and
[x];. We use a script font for random matrices, e.g., ¥, and
a sans-serif font for deterministic matrices, e.g., C. We denote
the n x n identity matrix by l,, and the all-zero vector by
0. The superscript * stands for transposition. We denote sets
with calligraphic letters, e.g., S, the set of integers {m,...,n},
m < n,as [m : n], the set [1 : n] as [n], and the set of all size-k
subsets of A4 by (“]?) . We denote the set of natural numbers by N
and the set of reals by R. We denote the real-valued Gaussian
vector distribution with mean g and covariance matrix A by
N (u,A), and the Bernoulli distribution with parameter p by
Ber(p). We denote convergence in distribution by 3. Finally,
zt = max{0,z}; ® denotes the Kronecker product; 1{-} is
the indicator function; diag(x1,...,x,) denotes the diagonal
matrix with (z1,...,x,) as the diagonal.

II. SYSTEM MODEL

We consider a stationary memoryless Gaussian UMA sce-
nario, in which K, users transmit their messages to a receiver
over N channel uses. The users are assumed to be clustered
according to their path loss. Specifically, users within the same
cluster ¢ experience the same path loss g,. For simplicity, we
consider the case of 2 clusters. Our results can however be
readily generalized to an arbitrary finite number of clusters.
We focus on the impact of heterogeneous path loss, and do
not model small-scale fading. Let X, ) € RN be the signal
transmitted by the kth user in cluster ¢. The received signal is

Kal Ka2
Y=g0) Xis+g) Xop+Z (1)
k=1 k=1

where K,; and K,s, with K,; + K2 = K,, are the number
of active users that belong to clusters 1 and 2, respectively,
and Z ~ N(0,1,,) is the Gaussian noise, which is independent
of the transmitted signals. We consider the power constraint
| X¢.k|*> < NP for all £ and k. We also assume that K,, Ka1,
and K, are fixed and known to the receiver. Finally, we assume
that each user has perfect knowledge of its path loss. As already
pointed out, this information can be obtained in practical

systems via the downlink control information transmitted by
cellular base stations.

For this channel, an (M, N, P, ¢) UMA code with codebook

size M and codeword length N consists of

« two encoding functions f, : [M] — RN, ¢ € {1,2},
that produce the transmitted codeword Xy = fo(Wi),
satisfying the power constraint, of user k in cluster ¢, for
a user message W, uniformly distributed over [M];

o a decoding function g : RN — ([gﬂ) that provides an
estimate W = {Wl, . '7W|VAV\} = g(Y) of the list of
transmitted messages.

The decoding function satisfies the following constraint on the
PUPE: -
W

L NP ¢ W) <, 2)

e = ——

W=

where W = {Wl, cee WIWI} denotes the set of distinct ele-
ments of W = {W1,..., Wk, }. In (2), we use the convention
0/0 = 0 to circumvent the case |[W| = 0.

The main difference between the definition of UMA coding
scheme just provided and the one originally provided in [2] is
that we allow the encoder to depend on the cluster. This allows
us to model location-based codebook partitioning.

III. RANDOM CODING BOUND

In this section, we first derive a random-coding achievability
bound on the PUPE achievable over the channel (1) that ex-
ploits location-based codebook partitioning. Then, we provide
in Section III-B two bounds for the case in which f; = fs,
which we refer to as common codebook case. The first bound
relies on joint decoding, whereas the second bound relies on
interference cancellation.

A. Location-Based Codebook Partitioning

We assume that the codewords of each of the two codebooks
Co={Cym}M_,, £ € {1,2} are drawn independently (across
both ¢ and m) from a N(0,P'ly) distribution, for a fixed
P’ < P. To convey message Wy, an active user k in cluster £
transmits Cy w,, provided that ||Cyw,||> < NP. Otherwise,
the user transmits the all-zero codeword. That is,

foWi) = Cow, 1{||Cow, |I* < NP} . &)

We consider a joint decoder, whose output is the set of
estimated messages YW = Wy U W,, where

(Wi, W) = argmin Y — gici (W) — gaca(WV3) ||
W1 WLCIM]: W nW,=0,
W1 |=Ka1,|Ws|=Kaz
“
with CZ(W/) = ZwEW’ Cng, l e {1, 2}.
An error analysis of this random-coding scheme yields the
following achievability bound.

Theorem 1 (Random-coding bound, location-based codebook
partitioning, joint decoding). Fix P’ < P. For the Gaussian



UMA channel (1) there exists an (M, N, P, €) random-access
code for which
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1
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kac = (91 + 93)(2tact + tmp1 —trp1), 2D
KMD = gitvpr + g5 (t — tvpi), (22)
Kpp = gitrp1 + g3 (t — tep1), (23)
7; = [(t — Ka2)+ : min{t, Kal }], (24)

7ZtMD17tFP] = [max{ovtFPl - tMDl} :
min{Ka1 — tmp1, Kaz —t +trp1}t]. (25)

Proof. The proof follows similar steps as the proof of [2,
Th. 1], namely, a change of measure and a Gallager-type

error exponent analysis that makes use of Chernoff bound,
Gallager’s p-trick, and Gaussian statistics. One fundamental
difference compared to [2] is that the decoder, when analyzing
codewords received at power Pg3, may put out a set of
messages, which we denote by Wac1, that are false positives
from the perspective of cluster 2, but happen to coincide
with the messages from cluster 1, and vice versa. We refer
to these messages as “accidentally correct” (AC) messages.
Compared to [2], this results in an additional union bound over
taci = |[Waci] (see (7). See Appendix B for details. O

B. Common Codebook

We now consider the common codebook case C; = Cy =
{C1,...,C\}.

1) Joint Decoding: We first obtain a bound for the case of
joint decoding.

Corollary 1 (Random-coding bound, common codebook, joint
decoding). Fix P’ < P. For the Gaussian UMA channel (1),
there exists an (M, N, P, €) random-access code for which € is
bounded as in (5) with (21) replaced by

kac = (g1 — 92)*(2tact + tmp1 — trp1). (26)

Proof. The proof follows along the same lines as the proof of
Theorem 1, with the fundamental difference that the assump-
tion of common codebook causes an increase in kKac, Which
represents the variance of a term related to the accidentally
corrected messages. See Appendix C. O

2) Interference-Cancellation Decoding: Assume without
loss of generality that g7 > g¢». We now consider an
interference-cancellation decoder that operates by first decod-
ing messages from cluster 1 as

Wi= argmin  [[Y —gicOV)| @7
Wi C[M]: [W]|=Ka
with ¢(W) = >, .y Cw. and then canceling the interference

from cluster 1 to decode messages coming from cluster 2 as

W = arg min 1Y —g1e(W1)—gacOVS)|. (28)
WL CIM\W: = [Wi|=Kaz

We state a random-coding bound for this strategy in the

following theorem.

Theorem 2 (Random-coding bound, common codebooks, inter-
ference-cancellation decoding). Fix P’ < P. For the Gaussian
UMA channel (1), there exists an (M,N, P, ¢€) random-access
code for which € is bounded as in (5) with Fo(p1, p2, p3)
replaced by

1
Eo(p1, p2, p3) = max <§p1p2p3 Indet(ly — 2ZacUac)
1

IN2
1
+ §p2p3 Indet(ly — 2XppUpp)
1
+ §p3 1ndet(|2 — 2ZMDUMD)

1
+ 3 Indet(ly — QZZCUZC))a

Lac = diag(taciP’, (tact + tmp1 — tep1)P’),

(29)
(30)



Lpp = diag(tpp1P’, (t — tpp1)P’), €2))
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Proof. The proof follows similar steps as the proof of Theo-

rem 1, with some extensions to capture the sequential nature of
the decoding operations (27) and (28). See Appendix D. [

(49)

IV. REPLICA METHOD PREDICTION

To obtain insights on system performance, we provide next
a large-system limit characterization of the PUPE achievable
over the channel (1). To derive the result, we rely on the replica
method, in line with its application to multiuser detection
systems [12]-[14], and the original UMA problem [15].

To state the main results of this section, we first introduce
the following definition of multiuser spectral efficiency.

Definition 1. Let

B =+VaA+ N, (50)

with a > 0, A ~ Ber(p), p € (0,1), and N ~ N(0,1).
Let I(a) denote the mutual information I(A; B) and let G
be a binary random variable taking values in {g1, g2} with
probability P[G = g¢] = ~p. Then, for every > 0, the
multiuser efficiency n is defined as

n=argmin(BEq[[(zPG?)] + 3(z — 1 —Inz)).  (51)

A. Location-Based Codebook Partitioning

We describe the random codebook corresponding to cluster ¢
as a matrix %y with M columns drawn independently from a
N(0,Ix/N) distribution. For a fixed p € (0,1), we consider
the regime in which the total number of active users satisfies
K, = uN. In contrast to Section III, where each user inde-
pendently selects a message uniformly at random yielding a
message selection probability 1 — (1 — 1/M)¥= ~ K, /M, we
consider a setting in which, within each cluster ¢ with K,, ac-
tive users, each message is selected independently according to
a Ber(K,,/M) distribution. Let ay = K¢ /K, and 5 = 2M/N.
Furthermore, let U, é denote an M x 1 vector with entries drawn
independently from a Ber(ayu/f3) distribution, representing
message selection in cluster £. Let finally Z' ~ AN(0,Iy).
We analyze the large-system performance of location-based
codebook partitioning achievable over the channel

- \/ﬁglcflU{ + \/ﬁggcggUé + Z/.

We have the following result.

(52)

Claim 1 (Replica decoupling, location-based codebook parti-
tioning). Let £ € {1,2}. Fix py = ayu/B, and v, = 1/2.
Denote by

Vin =PlUli =1|Y',%,%)] (53)

the marginal posterior probability associated with (52). Con-
sider also the following scalar channels for { € {1,2}:

By = \/PngeAs + Ny. (54)

Here, Ay ~ Ber(pyye), and Ny ~ N(0,1), independent of A,.
Let M,N, K, — oo with 3, u, and oy held constant. Then,

Vin =5 P[A; = 1] By. (55)

Proof. The proof follows from [14, Prop. 1]. See for details.
O

Remark 1. Claim 1 implies that, in the large-system limit, the
channel (52) decouples into the two scalar channels in (54).
Note in particular that the two scalar channels have determin-
istic path losses known to the receiver. Following an approach
similar to the one detailed in [15], we can use these two
scalar channels to obtain a large-system characterization of
the PUPE. Specifically, let ¢; be the solution of

VPnge = Q7' () + Q7 (peveee/ (1 — peve)).
In the large-system limit, the PUPE is given by (e1 + €2)/2.

(56)



B. Common Codebook

We denote the common codebook as a matrix € with M
columns drawn independently from a A(0, Ix/N) distribution.
We let i and v to be defined as before, but set now 8 = M/N,
and use a Ber(K,/M) distribution for message selection. Note
that K,/M = p/B. Let U” be the binary vector describing
the message selection. Let also GG be a random variable taking
values in {g1, g2} with P[G = g¢] = oy. Finally, let Z" ~
N(0,ly). We analyze the large-system performance achievable
over the channel

Y" =VPGeU" + Z". (57)

We have the following result.

Claim 2 (Replica decoupling, common codebook). Let
e {1,2}. Fix p= /B, and ¢ = ay. Denote by

VW=P[U"1=1|Y",%"], (58)

the marginal posterior probability associated with (57). Con-
sider the scalar channel

B// — /PnGAN _|_ NN.

Here, A” ~ Ber(p), G takes values in {g1,92} with
PG = g¢] = oy, and N"” ~ N(0,1). Furthermore, these three
random variables are mutually independent. Let M, N, K, —
oo with B, u, and oy held constant. Then,

(59)

W2 PlA” =1]| B (60)

Proof. The proof follows from [13, Claim 1]. See for details.
O

Remark 2. Note that, in contrast to the previous case, the
equivalent scalar channel in the common codebook case is a
single fading channel, with fading coefficient G not known to
the receiver. The large-system characterization of the PUPE for
this scenario can again be carried out along the lines of [15].
However, the presence of G precludes a closed-form expression.
Specifically, in the large-system limit, the PUPE is given by

dPy ]

Py|ln — > 6
1|:IldP1_

1-p
P

where 0 is determined by imposing that

€ =

(61)

dP; dP;
Here, Py = N(0,1) and P; = v1N (g1,1) + 72N (ga, 1).

Po{ln(m 29} T 1_%1{111‘% za] —1. (62
p

V. NUMERICAL RESULTS

We evaluate the minimum energy per bit NP/(2B) required
to achieve a PUPE of 0.01 as a function of the number of active
users K, for the case in which each user map messages of
B = 128 bits to codewords of length N = 30 000. Throughout,
we set g1 = 1, go = 0.8, and Ko = 2K,;. In Fig. 1, we depict

8 T T T T
CCS with multisource AMP

7 S ——

_______._--...----.ﬁ..’-@--‘-
6

N\ —e— common codebook

Theorem 2 . A

5 = = = Jocation-based codebook partitioning

\‘Corollary [ o
- ==

-— = = -

g e

minimum energy per bit (dB)
S
[

) Theorem |__——" e -.—____—‘*’
N M
replica method prediction
0 | | | | |
0 50 100 150 200 250 300

number of active users, K,

Fig. 1. Minimum energy per bit to achieve target PUPE of 0.01 vs. number
of active users K.

the random-coding bound with location-based codebook parti-
tioning in Theorem 1 as well as those corresponding to com-
mon codebook with joint decoding (Corollary 1) and common
codebook with interference-cancellation decoding (Theorem 2).
In the figure, we also depict the replica method predictions,
obtained via the expressions given in Remark 1 and Remark 2.
We also use the normalization with respect to the effective
number of bits suggested in [15]. Finally, we provide simulation
results for a CCS scheme [8] in which the decoder operates
according to the multisource-AMP framework proposed in [10].
Specifically, in the resulting scheme, each message is divided
into 16 blocks of 16 bits each. The CCS inner decoder per-
forms multisource-AMP signal reconstruction, while the outer
decoder stitches together the reconstructed signals, to ensure
that they form valid codewords. To do so, we assume that the
inner decoder produces a list of candidate messages of size
K, + 10.

As shown in the figure, for the channel model considered
in the paper, location-based codeword partitioning results in
a consistent reduction of the minimum energy per bit (al-
though this reduction is marginal when K, is small) across all
types of curves depicted in the figure (random-coding bounds,
replica-method predictions, performance of CCS schemes).
Note also that, for the scenario considered in this section, i.e.,
Kao = 2K,1 with go < g1, interference cancellation exhibits
poor performance (6 dB gap from the location-based codeword
partitioning bound for K, = 12).

VI. CONCLUSION

For a Gaussian UMA channel characterized by heteroge-
neous path loss, we showed that location-based codebook
partitioning outperforms, in terms of the minimum energy per
bit required to meet a specific PUPE, the conventional UMA
framework, which utilizes a common codebook for all users.
These gains were validated through finite-blocklength random
coding bounds, replica method large-system limit predictions,
and empirical performance of a coding scheme based on CCS
and multisource-AMP.



We anticipate that the energy efficiency gains from location-
based codebook partitioning will be even more pronounced
in wireless network architectures featuring distributed access
points (distributed MIMO). Indeed, in such systems, the ac-
cess points are located so as to ensure uniform quality of
service, which should amplify the benefit of the location-based
codebook partitioning, as illustrated in [10] for the case of
multisource-AMP decoders. Such extension, as well as the
inclusion of small-scale fading will be considered in future
works.
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APPENDIX A
MATHEMATICAL PRELIMINARIES FOR THE RANDOM
CODING BOUNDS

The following results will be used in the proofs of Theo-
rems 1, and 2.

Lemma 1 (Change of measure [16, Lemma 4]). Let p and q
be two probability measures. Consider a random variable X
supported on H and a function f: H — [0,1]. It holds that

Ep[f(X)] < Eq[f(X)] +drv(p, ) (63)

where drv(p,q) denotes the total variation distance between
p and q.

Lemma 2 (Chernoff bound [17, Th. 6.2.7]). For a random
variable X with moment-generating function E[e!X| defined
Sor all |t| <b, it holds for all \ € [0,b] that

P[X < 2] < M E[e™™]. (64)

Corollary 2 (Chernoff joint bound). For two random vari-
ables X, and X, with joint moment-generating function
EletrX1+12X2] defined for all |t1| < by and |ta| < bo, it holds
Jor all My € [0,b1], Az € [0, bo] that

PIX1 <1, Xy < p] < P12 Flem M X1m 22 Xe] - (65)

Lemma 3 (Gallager’s p-trick [18, p. 136]). It holds that
PlU; A;] < (32, P[A])? for every p € [0,1].

Lemma 4 (Moment-generating function of quadratic forms of
a Gaussian vector). Let X € RN and X ~ N(u,L). Let
A € RN pe g symmetric matrix and b € RN. For every
v € R such that £=1 + 2yA = 0, it holds that

E[exp(—y(XTAX + 2bT X))
= det(ly 4 2yZA)"1/2
~exp (272 (Ap +b)T (27" +27A) ' (Ap + b)

—y(uT A+ 26" p)). (66)
In particular, for v = —1 and p = 0, it holds that
Elexp(XTAX +2b" X))
= det(ly — 2ZA) 2 exp (26T (271 — 2A)7'b),  (67)

given that L' = 2A; for L = %Iy, A = Iy, and b = 0, it
holds that

2
_ 2 _ B
Ele X7 = (1 +290%) N/Qexp(_ 1+||g’}|/02>7 (68)

1
Jor every v > —5 5.

Proof. Denote the quadratic form as Q = XTAX + 2bT X.
Using the density of X ~ A (u, ), we compute E[e™7?] as

1
(2m)N/2 det(£)1/2
. / exp(— %(w—ﬂ)TZ_l(w—u) —yxTAz — 2vbT:c) dex.
(69)

E[e*VQ] =

We define K= 27! +27A and h = Z~ ' — 2vb. Since £ !
and A are symmetric, K is symmetric. The exponent on the
right-hand side of (69) becomes f%mTKm+hTa:f %pTZ’lp..
Hence,

exp(— 5" n)
(2m)"72 det(£)1/2

) / exp( — %azTKac + hTiL') dx.

Under the condition that K is positive definite, the standard
Gaussian integral identity yields

/n exp( — %mTKm + hTm) dx

:(27r)"/2det(K)*l/QeXp<%hTK*1h). (71)

E [e*WQ} =

(70)

Substituting this into (70) gives
E [e779] = det(£) /2 det(K) /2

1 1
-exp( L ghTK*1h>, (72)
which leads to (66) after some simplifications of the determi-
nant and exponent terms. The particular cases (67) and (68)
follow straightforwardly from (66).
O

APPENDIX B
PROOF OF THEOREM 1

We analyze the PUPE achieved with the random-coding
scheme introduced in Section III-A, averaged over the Gaussian
code ensemble. We denote by W, the set of messages trans-
mitted by users in cluster £ € {1,2}, and define (W1, Ws) as
in (4). Furthermore, we @otg\by Wb the set of misdetected
messages, i.e., Wyp = W\ W, agg byNWFp the set of false-
positive messages, i.e., Wrp = W \ W. The PUPE can be

expressed as
P = El'wﬂﬂ :

(73)
W

A. Change of Measure

We apply Lemma 1 to the random variable ‘L%‘Dl to replace
the measure under which the expectation is ta{(en by the one
upger which: 1) tgg active _users transmit distinct messages, i.e.,
[W| = K, and Wy,..., Wk, are sampled uniformly without
replacement from [M]; ii) Xy, = Crw,, V¢, k, instead of
Xk = Crw,1{||Cew,|| <NP}. The total variation between
the original measure and the new one is upper-bounded by

P[|W] < Ka| +P[3k € [Ku]: [Cow || = NP]
M! I'(N/2,NP/(2P’
o + 1, DON/2.NP/(2P")
MXa(M —K,)! I'(N/2)
= Do-

(74)
(75)

The inequality (74) follows from the same analysis as in [3,
App. A-A]. We consider implicitly the new measure hereafter
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Fig. 2. A diagram depicting the relation between the sets of messages.

at a cost of adding pg to the original expectation in (73).
Specifically, we expand this expectation as

P<Z

and next focus on upper-bounding P[[Wup| =
under the new measure.

P[[Wwp| = [Wee| = t] + po, (76)

[Wep| = 1]

B. Message Sets

We further split the sets of misdetected messages, false-
positive messages, and correctly decoded messages, as depicted
in Fig. 2. We first split Wyip into two sets Wyip1 and Whyipa
that contain the misdetected messages of users in clusters
1 and 2, respectively. Similarly, we split Wgp into Wgp;
and Wgpo. Recall that the decoded sets of messages for
clusters 1 and 2 are W1 and WQ, respectively. We denote
Waci = Wi N Wg, which is the set of messages that are
false positives from the perspective of cluster 2 but happen
to coincide with messages transmitted by cluster 1. We refer
to these messages as “accidentally correct” messages (hence
the subscript AC). Similarly, we denote the set of accidentally
correct messages for cluster 2 as Wace = Wo N W;. Finally,
we denote the sets of other correctly decoded messages as
Wer = Wi\ Wup1 \ Waci and Wez = Wa \ Wapa \ Wace.

Exploiting symmetry, we assume without loss of generality
that W = [K,], Wi = [Ka1], and thus Wy = [K,1 + 1 : K.
Denote the cardinality of the message sets as tpp1 = [Wapi»
trp1 = [Wepi|, tac1 = = |Wacz|. Under
the event [Wwup| = |Wrp| = t, we have that |[Wyps| = t —
tupr and [Wrps| = t—tpp1. As Wi = Wor UWac1 UWwubi,
Wi = Wei1 U Wace UWepy, and [Wy| = [W;| = Kai, we
obtain that

tpp1 +tac2 = tup1 +tact = Kot —tc1 < K. (77)
Similarly, we have that
trp2 +tact = tmp2 +tace = Kao —tco <Koz (78)

Therefore, given ¢, t\ip1 is upper-bounded by both ¢ and K1,
and lower-bounded as typ1 = t — typ2 > t — Kao. That is,

tpp1 is bounded in 7; defined in (24). Similarly, so is tgpi.
Furthermore, given typi1 and tgpi1, taci belongs to the set
Tt taims tep, defined in (25).

C. Pairwise Error Event

We express the received signal as
Y = gi[es(Wwmp1) + c1(Wact) + cac(Wer)]
+ ga[e2(Wwpz) + c2(Wacz) + caWe2)| + Z. (79)

Furthermore, the sums of the codewords corresponding to the
decoded message sets Wy, W) are expressed as

c1(W1) = e1(Wep1) + e1(Wace) + et (Wer), (80)
ca(Wa) = c2(Wrp2) + ca(Wac1) + c2(Wea). (81)

The pairwise error event W — W occurs when
1Y = gics(Wh) — gaca (W) < |1 2. (82)

Using (79), (80), and (81), we obtain that (82) is equivalent to

1Z + g1ci(Wwp1) + gaca(Waip2)
— g1c1(Wrp1) — gaca(Wrp2)
+ g1c1(Wact) — g2c2(Wact)
— g1c1(Wacz) + gacz(Wac2) || < [|Z]]. (83)
We denote by F(Wwupe, Wrpe, Wace, £ € {1,2}) the set of
Wb, Wrpe, Wace, £ € {1,2}) such that (83) holds.
D. Error-Exponent Analysis

By writing the event |Wyip| = [Wrp| = t as a union of the
pairwise error events F'(Wwipe, Wrpe, Wace, € € {1,2}), we
have that

P[[Wwp| =

U U U

tMmp1E€T: trP1E€Tt tac1 ETY

»IMD1,tFP1

Wnp1 C (,[MD D) Wipac (! t"ftﬁ;ia])

U U

[Ka+1:M] [Ka+1:M]\W
Wep1 C( top1 ) WepaC (2 —tppy FP1)

U U

K ]\w [Ka1+1:Ka]\W
WAClC( Y MDI)WACQC(tAC11+tD/I?31 tl\l/?lglz)

Wep| = 1]

F(Wwpe, Wepe, Wace, £ € {1,2})

SIS

tmMp1E€Te tep1 €Te tAc1 €T, 4y 11 tppy

Bl U U

Wnp1 C (,[MDE ) Wbz C([Ktal:rl\qlDIia])

U U

[Ka+1:M] [Ka+1:M\W
WFP1C( opa )WFPQC( e Fpl)

(84)



U U

[Ka1 N\WMD1 [Ka1+1:Ka\WnD2
WACIC( tACL ) WACQC(fACl“Mm*me)

F(Wwpe, Wrpe, Wace, £ € {172})]~ (85)

Given cs(Wwpe), ce(Wrpe), £ € {1,2}, and Z, it holds for
every A > 0 that
P [F(Wwpe, Wepe, Wace, £ € {1,2})]
< exp()\||ZH2) EWAC17WACZ [exp(—/\HZ
+ g1c1(Wap1) + g2c2(Whipz)
— gic1(Wrp1) — g2c2(Wrp2) + gic1(Waci)
— g2ca(Wac1) — gr1c1(Wacz) + ngQ(WA02)||2)] (86)
= exp(A| Z1*) (1 + 2X(g7 + 3)(tact + tace)P') N/
-exp (= A Z + gic(Wap1) + g2c2(Waip2)
— g1c1(Wep1) — gaca(Wep2)||?)
(14 2Mg7 + 63)(tact +tac2)P) ),
where we have applied the Chernoff bound in Lemma 2 in (86)
and then used (66) in Lemma 4 to compute the expectation.
Note that (g2 + ¢3)(tac1 + tacz) is equal to kac defined
in (21). Next, we apply Gallager’s p-trick in Lemma 3 to get

that, given ¢;(Wwmpe), ce(Wrpe), £ € {1,2}, and Z, it holds
for every p; € [0,1] that

Lo mc?

[Ka1 \NW [Ka1+1:Ka]\W
1fAC1MD1) WACQC( 1 MD2)

87)

tacittMD1 —tFP1

F(Wwipe, Wrpe, Wace, £ € {1»2})]

< (Kal - tl\/[m)p1 (Ka —Ka —t+ tMD1>p1
- tact tact +tmp1 — trp1
. (1 + 2)\I{A0P/)7Np1/2

exp (1 (11112 = 12 + g1ex(Waap1) + g2 Warpz)

— gict(Wrp1) — 9202(WFP2)||2)>

where p; is defined by (19). By taking the expectation over
Wrp1 and Weps using (66) in Lemma 4, we obtain that, for
given ce(Wwipe), £ € {1,2}, and given Z,

U U

P [
[Ka1]\WnD1 [Ka1+1:Ka]\WniD2
Wacrc( taci ) WAC2C(fAC1+fMD1*tFP1)

F(Whape, Wrpe, Wace, £ € {1, 2})]

<Kal - tMDl) o (Ka —Ka —t+ tMD1> -
tact tact + tMp1 — trp1

<

. exp ()\leZ||2—,u1||Z + g1c1(Wup1) + g262(Waip2) ||

(1 2401 (g3trpr + gter2)P) ! — Na ) (88)

where

a; = % In(1+ 2)\I€AcP/)

1
+3 In (14 2u1 (g5 trp1 + gitep2)P'). (89)

Note that g#tpp; + gatrpe is equal to kpp defined in (23).
Now we apply Gallager’s p-trick again to obtain that,
given ¢;(Whine), ce(Wrpe), £ € {1,2}, given Z and for every
p2 € [0,1],

"L

(220 Wipac (o7

U U

Ka1\W Ka1+1:Ka\W
WACIC([ d1f]1:c1MDl) WACT‘)C([fA‘g;rHI\;]LD]}*tNFIEf)

F(Wwpe, Wepe, Wace, £ € {1, 2})1 (90

< (M - Ka) P2 (M -K,— tFPl)p2
- trp1 t — trp1
(Kal - tMD1>p1p2 <Ka - Ka —t+ tMD1>p1p2

tact tact +tmp1 — trP1

’ ECI(WMD1)752(WMD2) [exp ()\ppoHZHQ

— w2l|Z + giex(Waip1) + g2c2(Wwup2)|1? — NPQGI)}

1)
(M =K\ (M- K, —trp1\”
_( trp1 ) ( t —trp1 )
Ka1 — tmp1 \ 7' (Ko — Ka1 — t + tvp1 \ 77
. ( tact ) ( tact + tMp1 — trP1 )
(14 2p2(g7 tupr + gatmpa)P') N/
H2 2
P ((/\Plp2 1+ 2u2(g3tupr + ggtMDz)P')HZ”
~ Npaar) (92)
(M =K\ (M —K, — trp1 |
( trp1 ) ( t —trp1 )
Ka1 — tmp1 """ (Ko — Ka1 — t + tmp1 ) 7'
. ( tact ) ( tact + tMp1 — trP1 )
-exp(b]| Z||* — Npaa; — Nag), 93)

where we used (66) in Lemma 4 to obtain the first equality,
and we define uo by (20) and

H2
) 94)
1+ 2u2(g?tmp1 + g3tvp2) P

1
az =3 In (1 + 2p2(gtmp1 + gatup2)P').

b= Ap1p2 —

95)

Note that g%tMDl + g%tMDQ is equal to kyp defined in (22).
We now apply Gallager’s p-trick the third time to obtain that,
given Z and for every p3 € [0, 1],

5| U U

waron (152 e (R )



U U

[Ka+1:M] [Ka+1:M]\W
Wep1 C( top1 ) WepaC (12 t—tppy FP1)

U U

[Ka1 \WMD1 [Ka1+1:Ka]\WnD2
WAClC( * tact ) WACQC(tAaC1+tMD1*fFP1)

F(Wwipe, Wrpe, Wace, £ € {172})] (96)

Ka2

S < Kal >P3 < >P3
tMD1 t — tnMD1

M — K.\ (M — K, — tpp1\ "
( trp1 ) ( t — tpp1 )
Kar — tmp1 "' (Ko — Kar — t + tmp1 )77
. ( tact ) (tAc1 + tMDp1 — trP1 )
-Ez[exp(b]| Z||* — Npapsa) — Npzay)]
Kao

Kal P3 P3
B (tMm) (t - tMD1>
M — Ka P2P3 M — Ka _ tFPl P2pP3
. ( trp1 ) ( t —trp1 )
Kal — tMD1 P1P2P3 Ka _ Kal —t+ tup1 P1P2P3
. < taci ) ( >

o7

tact + tMp1 — trP1

-(1- 2bp3)_N/2 exp(—Npapsa; — Npsaz), (98)

where in the last equality, we use (66) in Lemma 4 to compute
the expectation over Z.

We conclude that P|Wyp| = [Wrp| =t is upper-bounded
by the right-hand side of (98). We complete the proof by
substituting this bound into (76).

APPENDIX C
PROOF OF COROLLARY 1

When C; = Cs, we have that ¢; (W) = co(W) for a given
message set VY. The proof follows the same steps detailed
in Appendix B, except that, in (87), the covariance matrix of
gict(Wact) — gacaWact) — g1c1(Wacz) + gaca(Wace) is
given by kacP’Ix with kac defined in (26).

APPENDIX D
PROOF OF THEOREM 2

By performing the same change of measure as in Ap-
pendix B, we obtain the bound (76). We next focus on upper-
bounding P |Wwyp| = |Wrp| = ¢ under the new measure and
for the interference-cancellation decoder.

A. Pairwise Error Event

For this decoder, the pairwise error event W= W implies
that

o~

1Y — g1V < [IY = greOM) ]|, (99)

1Y —g1c(W1) = gacOM)|| < Y —g1c(W1) —gac(Wa) |
(100)

where we recall that (V) = > ., Cy. Splitting message
sets as in Appendix B, we express (99) and (100) as

| Z + grc(Wab1) + g2cWwmb2) — g1¢(Wrp1) + g2¢(Wez)
—A
+ g1cWaci1) + (92 — g1)c(Waca)||
<N Z + g2c(We2) + gac(Wwap2) +g2¢(Wace)|l, (101)

—B
| Z + gi1cOWup1) + g2¢c(Wnp2) — g1¢(Wrp1) — gac(Wrp2)
—=c
+ (91 = 92)(c(Wac1) — c(Wac2)) |l
< Z + gi1cWwmb1) — g1¢(Wrp1)
=D
+ gicWact) — gicWac2) s (102)

where we also defined the vectors A, B, C, D to
make the notation more compact in the following. We de-
note by FrcWwpe, Wrpe, Wace, ! € {1,2}) the set of
Wwbpe, Wrpe, Wace, £ € {1,2}) such that (LQ]) and (102)
hold. Note that W is fully determined given W = [Ka1 +1 :
K.], Wupa, and Wace. By writing the event [Wyp| =
[Wrp| = t as a union of the pairwise error events, we obtain
a similar bound as in (85) with F(Wwupe, Wepe, Wace, £ €
{1,2}) replaced by Fic Wwmbpe, Wrpe, Wace, £ € {1,2}).

B. Error Exponent Analysis

We apply the Chernoff joint bound in Corollary 2 to bound
the pairwise error probability as

P[FicWwmbpe, Wrpe, Wace, £ € {1,2})]
=P [l A+ gic0Wac1) + (g2 — g1)e(Waca) I
— | B + g2c(Wac2)|I* <0,
IC + (91 = g2)((Waca) = c(Waca))|”
— 1D + gre(Wac1) = gre(Waca)||* < 0]

<E[exp (= Ml A+ gieWact) + (g2 = g)e(Waca)|I
— 1B + gacWac2)|1*)
~22(C + (g1 = g2)(€Wac1) = cWaca))|1
1D + greWact) = gieWaca) )|

for all A; > 0 and Ay > 0.
1) Expectation over ¢(Wac1) and ¢(Wacz) and the First
Gallager-p Trick: The exponent in (104) can be written as

C(WACI>:|
c¢(Wacs)

c(Wac1)
C(WA@)} + Rac (105)

(103)
(104)

[cWac1)" ¢cWaca)T](Uac @ In) {
+ 2V, {
where

1 2
oo [0 2]
(2) (3)
Upac  Uac

(106)



(1)

Ul = —M1Gg; — A2g2(g2 — 291), (107)
uld = Mgi(g1 — g2) + Aaga(g2 — 201), (108)
w3l = —X1g1(g1 — 292) — Aaga(g2 — 291), (109)

Vac = _AlglA_AQ(gl _92)C+)\291D
A(g1—g2)A +XA192B +X2(91—g2)C —Aog1 D |’
(110)

Rac = =M(|A|2 = | BJ2) = M (ICI2 — [ DI?).  (11)

C(WACl) N .
~ 0,X Iy) with X =
c(Wacz) ( ac ® In) AC
diag(tac1P’, taceP’). We apply (67) in Lemma 4 to compute
the expectation in (104) over ¢(Wac1), c(Wacz2) as
det(lg — 22A0UA0>_N/2
cexp (2Vaol(Z5¢ — 2Uac) ! @ In]Vac + Rac)  (112)
where we require A1, Ao to satisfy that Zgé = 2Uac.
Now, we apply Gallager’s p-trick in Lemma 3 to get that,
given cOWupe), cWrpe), £ € {1,2}, c(We2), and Z, it holds
for every p; € [0, 1] that

"l mce?

[Ka1\WnD1 [Ka1+1:Ka]\WnD2
taCt ) WACZC(‘A01+‘MD1—tFP1)

Note that

FieWwpe, Wepe, Wace, £ € {1, 2})]

< (Kal - ?fMD1>p1 (Ka —Ka —t+ tMDl)pl
- tact tact + tMp1 — trP1

~det(ly — 2ZpcUac) NVP1/2

- exp (QprATC[(ZKé —2Uxc) !t @ In]Vac + p1Rac).
(113)

2) Expectation over ¢(Wgp1) and c(Wrp2) and the Second
Gallager-p Trick: Next, we denote

E =Z + gicWwub1) + g2¢c(Wap2) + gacWe),  (114)
F = Z + gic(Wwub1) + g2¢c(Waip2), (115)
G = Z + gicOWup1). (116)

It follows that A = E — glc(prl), C=F—- glc(WFpl) —
goc(Wrp2), and D = G — gic(Wrp1). We can express the
exponent in (113) as

2p1Vacl(Ex¢ — 2Uac) ! @ IN]Vac + p1Rac

= [cWrp1)" c(Wrp2)"](Urp @ In) [z%gﬂ

Wrp1)
v |CWVer)| | 117
+ FP |:C(WFP2) + Hpp ( )
where
Mgt Agige
Upp = 201 A — 118
FP p1ArpQrp — p1 [)\29192 o | (118)
Vep = 2p1[Arp @ In]Qrp
MG E+ X F — g G
, 119
+ 1 [ AogoF. (119)

Rrp = 2p1Qtp [(Zx(l; —2Uac) ' ®In]Qrp
— M (E? = IBI?) — pix2(I|F|1? = IG]1?),

(120)
with
Que — Mgt — Aagige A2ga(g1 — g2)
—A191(91 — g2) + 29192 —A202(91 — 92) |’
(121)
Qrp = { MG E = X291 — 92)F + o1 G }
M(91—92)E + Mg2B + A2(g1—g2)F — 291G’
(122)
Arp = Qip(Z3d—2Uxc) ™t (123)
c(Wrp1) ,
Note that ~ N(0,X | th =
ote tha L(WFM)} (0,Zpp ® Ix) wi FP

diag(tpp1P’, trp2P’). By applying (67) in Lemma 4 to com-
pute the expectation of (113) over ¢c(Wrp1),c(Wrp2), we
obtain that, given cOWype), £ € {1,2}, ¢(Wecz2), and Z,

"lmce?

[Ka1\WnmD1 [Ka1+1:Ka\WnD2
tACl ) WACQC(tAm“Mm*tFm)

Fic(Wwpe, Wepe, Wace, £ € {1, 2})]

Ka1 — tup1\”' (Ka — Ka1 — t + typ1 |
( tact > < taci + tmp1 — trp1 )
-det(la — QZAcuAc)prl/z
~det(ly — 2ZppUpp) N2
-exp (2Vip[(Zpp — 2Upp) ' @ IN]Vip + Rpp)  (124)

under the condition that Zgé = 2Upp.

Now, we apply Gallager’s p-trick again to get that,
given cWwpe), £ € {1,2}, c(Wcz), and Z, and for every
p2 € [0,1], it holds that

"L

(S5 ) Warac (o738 veen)

U U

[Ka1 \WMD1 [Ka1+1:Ka\WnD2
WACIC( tACL ) WAC2C(fAc1+tMD1*tFP1)

<

Fic(Wwbe, Wepe, Wace, £ € {1,2})] (125)

< (M - Ka> r <M -K, - tFP1>p2
- trp1 t — trp1
<Ka1 - Yme)plp2 (Ka —Ka —t+ Tme)plp2

taca taci1 +tMp1 — tFP1
. det(lg — QZAcuAc)inlm/Z

~det(ly — 2ZppUpp) NP2/

-exp (2p2Vip[(Zpp — 2Upp) ' ® IN]VEp + paRpp).
(126)



3) Expectation over c(Wwp1) and ¢c(Wwipz2) and the Third
Gallager-p Trick: We express the exponent in (126) as

202 Virp [(Zrp — 2Upp) ' @ IN]VEp + p2 Rpp

w
= [c(WMDl)T C(WMDQ)T](UMD & IN) [zgwxgiﬂ (127)
T [cWwup1)
+ 2V L(WMDQ)] + Rmp (128)
where
Unp = 2p2AMDQup + 2p201 AmM
13 (M + A2)g192

— 129
P2 [()\1 + A2)g192 A2g5 y (129)

_ [ —Ag? +X2g192 —A1g1g2—A2g2 (g1 —92)]
Mg1(g1—92) —A2g192 A19192 + A2g2(91—g2) |’

(130)
Mgt (A +A2)g192
= 2p1 ArppM 131
Qup p1ArpM + p1 {/\29192 Nog2 , (13D
Vb = 2p2(Amp ® IN)Qwmp + 2p2p1(Am @ In) M
— p2mR, (132)
Qup = 2p1(Arp @ IN)M + p1 R, (133)
M= ( {_11 _11} ®IN)R, (134)
A1 A1g192 Z
R = | 135
( {sz Lo ) v | 039
Rup = 202Q31p[(Zpp — 2Urp) Qb
+4p1p2MT (58 — 2Uac) ' M, (136)
with
Amp = Qup (Zpp — 2Urp) 1, (137)
Am=MT(Z4 —2Uac) ™t (138)
Note that |CYMPU| (0,Zyp ® In) with Zyp =
c(Whaip2)

diag(tmp1P’, tmp2P’). By applying (67) in Lemma 4 to com-
pute the expectation of (126) over ¢(Wwp1), c(Wwmp2), we
obtain that, given ¢(Wcs) and Z,

Lo

([Ka+1:M]> WFPQC([K-@+1¢M]\WFP1)

trpp1 t—tpp1

U U

[Ka1\WnD1 [Ka1+1:Ka]\WnD2
WAClC( tAC1 ) WACZC(iAC1+fMD1*tFP1)

Fic(Wwbe; Wepe, Wace, £ € {1, 2})]

< <Ka1 - tMD1>p1 <Ka —Ka —t+ tMD1>p1
- tact tact + tMp1 — trP1

-det(ls — 2ZACUAC)*N”1PZ/2
. det(|2 — 2ZFPUFP)7NP2/2
-det(la — QZMDUMD)_N/2

- exp (QVI\};D[(ZK/&) — QUMD)_1 ® IN]VMD + RMD)
(139)

under the condition that £ = 2Upp.
We now apply Gallager’s p-trick the third time to obtain that,
given ¢(Wc2) and Z, and for every p3 € [0, 1],

¢l Uy

Wwup1C (f[;‘gl) Whpa C ([Kff:;vllr:)}(la])

U U

Ka+1:M Ka+1:M]J\ W,
WFPlC([ ?FPl ]) WFPQC([ * t—tllipl FPI)

U U

W [Ka1\WnmD1 [Ka1+1:Ka\WpniD2
AC]C( taCl ) WAczc(tAmHMm*tFm)

Fic Wape, Wepe, Wace, £ € {172})] (140)

P3 P3
)
tMD1 t — tmMD1

. (M _ Ka) p2p3 (M “ K, — tFpl)Pzﬂs
trpP1 t — trp1

Ka1 — tnp1 \ 7727 (Ky — Kar — t + tapr 71727
. ( tact ) ( tact + tvmp1 — tepr )
. det(|2 — ZZACUAC)—NmmPs/z

-det(la — QZFPUFP)—szp3/2

-det(ls — 2ZMDUMD)7NPS/2

~exp (2p3Vaip [(Zp — 2Unp) ™! @ In] VAo + p3Raip).
(141)

4) Expectation over Z and ¢(Wc2): We express the expo-
nent in (141) as

2p3Vaip [(Zyp — 2Unp) ™ ® INJVaup + psRup

Z
=1ZT cWes)T1(U | 142
[Z" ¢c(Wc2) ](Uze @ In) [C(Wcz):| (142)
where
Uzc = 203Q7%¢(Zyb — 2Ump) ' Qzc
+2p3p2A\7ca(Zpp — 2Urp) M Azca
+4p3p2piAzon(Txe — 2Uac) Azer  (143)
with
-1 1]
Qzc = papr| —lo + (4AupAre +2AM) | | | +2AMD
A1g1 A1g192 -
. 144
[)\292 0 ]’ (149
B -1 1 g1 A1g1ge]
Azca = p1 ('2 + 2Arp [ 1 1} ) ngz 0 J
(145)
-1 1T M Mg
Agzcp = [ 1 _1} {)\292 0 . (146)



V\Z)CQ):| ~ N(O, Yz7c ® Iy) with Xyze =
diag(1, (Ka2a —tmp2 —tac2)P’). By applying (67) in Lemma 4
to compute the expectation of (126) over Z and ¢(Wcz), we
obtain that

el Uy

oo (152 e (o)

U U

Ka+1:M Ka+1:M]\ W
Weps C (M) Wiy o (Fa T EPL)

U U

Ka1\W Ka1 +1:Ka]\W
WAClC([ al&mMDl) WACZC(&A681++tM?)]}*tI\I«Eg12)

Note that [
e(

Fic W, Wrepe, Wace, £ € {1,2})] (147)

Ka2

S ( Kal )Pa < )PS
tMD1 t — tmp1

M — Ka pP2p3 M — Ka — tpp1 P2pP3
< typ1 ) ( t—1trp1 >

) (Kal — tMDl)leﬂs (Ka C K —t 4 tMD1>plpzp3

tact tact + tmp1 — trp1

-det(ls — QZACUAC)*NP102/J3/2
-det(ly — 2ZppUpp ) Nr2ra/2
- det(ly — 2ZypUnp) ~Ns/2

~det(ly — 2Z7cUzc) V2, (148)

which is an upper-bound for P | Wyp| = |Wrp| = t. Finally,
by substituting this bound into (76) and rearranging the terms,
we complete the proof.

APPENDIX E
MATHEMATICAL PRELIMINARIES FOR REPLICA ANALYSIS

We will make use of the definitions and results presented in
this section for the proofs of Claim 1 and Claim 2. We will
consider a generic channel model

Yy =¢U0" +Z (149)
where f’, Z: e RN, U (0~) is a random (column) vector of
length m/, € € RNX™ | ¢ has i.i.d. N'(0,1/N) entries, Z ~
N(0,ly), and will specialize the value of m’ along with the
definition of U, to prove each claim. We fix 3 =m’/N.

First, we introduce the definition of the partition function.

Definition 2 (Partition Function). Fix positive integers {and r,
and a real number t. Let {U® i > 1} be an i.id. process,

where U® 2T ©). Then, the partition function is defined as

1T

(7,6 | B e[y |00, ¢]|¥, @

j=1
(150)

We have the following result.

Assumption 1 (Replica Trick for Moment Calculation). Let
K(t,r) =logEy [C(T)(f; Y, ?)}

denote the cumulant of the partition function in (150). Then,
the (™ moment of the random variable

(151)

Vi = P[[fﬂo)]l _ 1\17,%?} (152)
is given by
.. d
Ey ¢ [V&] = lim lim 74T (153)

Remark 3. In applying the replica trick in Assumption I,
we will compute in closed form E[C(T)] for r € N. We will
then assume that the result holds for every v € R. This is
a common practice in the application of the replica method
(see [12] for such an application in the context of multiuser
communication). A rigorous justification involves finding a
unique analytic continuation of E[( (T)] from the set of positive
integers to the entire real line; see, for instance, the discussion
in [19].

Lemma 5. (Gaussian Integral Identity) Fix a positive integer r.
For i € [0: 7], define

M
W=\ 5 2 [0

m=1

(154)

L wvEwp? | dy a2
E-[[]e 2 —— =72 155
/ v H V2T (155)

3=0
where
(r) 1 1
G\"(2) = . logdet(l,41 + £ 2) — 3 log (1+ 1)

— glog(Zw). (156)

Here, X and 2 are (r+1) X (r + 1) matrices with the (i, j)th

entry given by 3 (]l{z =j}- Til) and E[W; W}, respectively.

The following lemma is used to evaluate the limiting value
of the logarithm of the moment-generating function that arises
in the analysis.

Lemma 6. (Varadhan’s Integral Lemma, Theorem 4.3.1 [20])
Suppose that measures {,,n > 1} satisfy the large deviation
principle with a good rate function I : X — [0, 0] (see [20,
Section 1.2]), and let ¢ : X — R be a continuous function,
where X is a regular, topological space. Assume that, for some
v>1

log E [e w(nzn)}
limsup ——— < 0.

n—00 n

(157)



Then,

lOgE |: ’Y¢(Zn):|
limsup ———=

n—00 n

= sup(é(z) — I(2)).  (I58)

zeX

Lemma 7 (Moment convergence implies convergence in dis-
tribution [21, Theorem 30.2]). Let {X,}n>1 be a sequence
of real-valued random variables and X a real-valued random
variable. Suppose that:

1) For every integer k > 1, the kth moment E[XF] exists for
all sufficiently large n.
2) For every integer k > 1,
lim E[X"] =

k
i, B =LY
3) The distribution of X is uniquely determined by its
moments (equivalently, Carleman’s condition [21, Theo-
rem 30.1] is satisfied).

Then X,, converges in distribution to X, i.e.,

X, 2 x.

APPENDIX F
PROOF OF CLAIM 1

The proof follows the line of treatment outlined in Appendix
G. The key difference involves modifying the definition of W;
in Lemma 5 to

2M
P91 GO [0, sz O30
Z [0} PGRIM L
m 1 7rL:M+1

(159)

in conducting the central limit theorem analysis. Here, ¢ 2
%, € and ¥ are independent, and U(l) has i.i.d.
Ber(ayp/3) entries. The rest of the proof is handled as in
the proof of Proposition 1 in [14], which is built along the
lines outlined in Appendix G.

APPENDIX G
PROOF OF CLAIM 2

To establish the convergence in distribution of the random
variables Vx, by Lemma 7, it suffices to show that the moments
converge, i.e., E[V{] — E[V¥] for all positive integers £. To
compute these moments, we invoke the replica method stated
in Assumption 1.

The expectation of the partition function can be expressed
as

Efz,@{C(T)(t;f’,CN)}
) /etlmu()h r['gﬂﬁ,é]ﬁl:’r [g|fJU>,c~} d§
- (160)

CaGrd) e la=C0y%
m)T 2 H e = dy
j=0

t [110W]
_E /e” ‘2 . (161)
‘We obsegve that, since the channel is memoryless, and the
codebook C is i.i.d., the integrals over each of the coordinate
of y are identical. Using this observation, we can express (161)
as follows:

E[¢ (7,0 =

. lﬁl oo i P \/ﬁc“Tf](i))Q dj N
R R B | Gl BN
27

(162)

We define W; as in Lemma 5. Using the central limit theorem,
Edgeworth expansion as argued in [12, Appendix B], and
invoking Lemma 5, we conclude that

E

_ } ¢ n 01 +a" (2)+0( 1)

E {g“’)(t;?,%) E|e o (163)

where G(")(2) is as defined in (156). We can further use
Lemma 6 to obtain

o 1
Jim logE [d’") tY, %)} = sup LBG(’“)(Q) — I o@)}

(164)
where

I (t; 2) = sup [Tr(QNQ) —log M(T)(QN)} (165)
2

is the rate function corresponding to the measure
o M2 = (k
lH H(g(Z [T, [O9)], — = > ot Hi=1[U(k>]1‘|

1=0 <4 m=1
(166)
and 2 is defined in Lemma 5. Also,

14
M(r)(g) =E |exp <t H[ﬁ(i)h) e%/TQGZ//‘| (167)
i=1
where %' = [UO],,...,[OM],]T

We next substitute (165) to (164), which yield the following
optimization problem.

sup inf [;GW(,@) —Tr(22) + log M) (,@)} . (168)

2 2
Let
T(2,2) = -5 5 log det(l, + £.2) — Tr(2.2)
+logE [e%m’@%/} log (1 +7)
B
~ 28 " Jog(2n). (169)

Fix a 2. Then, the infimum with respect to 2 satisfies
E {%/%/Te%/—ra@@//}

2= E [6%/1@%1}

(170)



Let the solution of (170) be 2*(2). By defining the expecta-
tion with respect to the tilted measure

5 eOZ/ITeDj%/
w2) = ——— (171)
E [e%' Q%’}
we can rewrite (170) as
9-F [%’%’TL@”} . (172)

Now, with 9 = Q*(Q) the supremum of the function
T (2, 2%(2)) satisfies

. +x2)"'z
—

Equations (170) and (173) together form saddle point equa-
tions.

Now, we assume that the solutions of the saddle point
equations satisfy some symmetry assumption. Such a symmetry
assumption is referred to as the replica symmetry assumption.
The work of [13], among others, make such a symmetry
assumption to solve the saddle point equations. Specifically,
in our case, we will assume that the joint solutions to (170)
and (173) have the following structure:

9= (173)

p q q - g
9 p g9 - q
9 =19 ¢ p - ¢ (174)
4 9 9 " Ploinxe+1)
g f f 7
g f - F
9= |f [y - f (175)
LA A ] e
Under replica symmetry assumption,
-1
G(2%) = S log(2m) — ~—log (1 + B(p — q))
1
—5log(1+B(p—q)+r(p—q)). (176)

2

Next, we evaluate the moment generating function M (7’)(0@*)
as

M"(F*) =E [e(z:zo[miffﬂg—f)zrzo[ff]?} (177)
which can be expressed as
M"(2*) =
E l\/T/e—fu%r(?f Z;‘_o[ﬁ]i)w(g—f)Z;‘_o[ﬁ]?du] .
m
(178)

Now, the rate function admits the form

17(2%) = (r+ 1)(pg +raf)

—logE [/ \/715 [eff(f(uf[U]o)ﬁg[U]g)}
™

. (11«: [e2f'[U]1+(gff)[U]?] ) du} (179)
Next, using the replica trick, we obtain
— lim E {1 log (M (¢, Y, 5)}
M—oco | M
i & [0 100 2|
180
Using (173), we conclude that
f= SR (181)
2(1+ B(p — q))
and
g=0. (182)

To establish convergence to the limiting random variable, we
next express the parameters above in terms of the correspond-
ing conditional expectations. This analysis follows the approach
outlined in [13], leading to relationships analogous to those
in [13, eq. (132)—(135)]. Carleman’s condition for moment
determinacy [21, Chapter 30, Theorem 30.1], are satisfied as
the random variables involved are bounded in [0,1]. These
together prove the convergence in distribution to a limiting
random variable. The expression for the limiting random vari-
able involves calculation of the parameter by solving the final
resultant saddle point equation

([U]l - E[[U]ﬂ\/ﬁ[ml + lND2

1
— =1+PSE
n 5 Vi

(183)

with N ~ N(0,1), and n = d?/f.
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