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Abstract—Type-based unsourced multiple access (TUMA) is
a recently proposed framework for type-based estimation in
massive uncoordinated access networks. We extend the existing
design of TUMA, developed for an additive white Gaussian
channel, to a more realistic environment with fading and multiple
antennas. Specifically, we consider a cell-free massive multiple-
input multiple-output system and exploit spatial diversity to
estimate the set of transmitted messages and the number of users
transmitting each message. Our solution relies on a location-
based codeword partition and on the use at the receiver of a
multisource approximate message passing algorithm in both cen-
tralized and distributed implementations. The proposed TUMA
framework results in a robust and scalable architecture for
massive machine-type communications.

I. INTRODUCTION

Massive machine-type communication is pivotal for Internet
of Things, enabling connectivity for a massive number of
devices (also called users). These devices, ranging from sen-
sors to smart appliances, demand scalable and energy-efficient
communication systems to support high-density deployments.
Unsourced multiple access (UMA), introduced by Polyan-
skiy [1], provides a theoretical framework for the analysis of
massive uncoordinated access systems. In UMA, all devices
use the same codebook, and the receiver decodes the set of
transmitted messages without identifying their sources. In both
the original analysis [1] and many follow-up extensions [2]–
[5], the event where multiple devices transmit the same
message simultaneously, referred to as message collisions, is
treated as error. Indeed, under the assumption that each device
chooses its message uniformly at random from a large set, the
probability that two devices pick the same message is negli-
gible. However, there are many practically relevant scenarios,
such as industrial monitoring, multi-target tracking [6], point-
cloud transmission [7], and federated learning [8], in which
the messages are related to underlying physical or digital
processes and, hence, may be correlated. In such scenarios,
it is often necessary for the receiver not only to decode the
message set, but also to estimate multiplicities, i.e., the number
of users transmitting the same message.

The idea of estimating the type, i.e., the empirical dis-
tribution of messages across the users, dates back to the
work of Mergen and Tong [9]. Type-based UMA (TUMA),
introduced by Ngo et al. [10], extends the approach in [9] to
the UMA framework by letting the receiver decode the set of

transmitted messages along with their multiplicities. In [10],
TUMA was designed and validated for an additive white
Gaussian noise (AWGN) channel under perfect power control;
in this simplified scenario, multiplicities can be estimated
directly from the power at which each codeword is received.

The purpose of this paper is to generalize the analysis
in [10] to the case of fading channels. Specifically, we
shall consider TUMA over a cell-free (CF) massive multiple-
input multiple-output (MIMO) system [11]. We choose this
architecture to leverage the benefits of distributed connectiv-
ity [11] in type estimation. Gkiouzepi et al. [12] recently
demonstrated the benefits of CF massive MIMO for UMA
using the multisource approximate message passing (AMP)
algorithm proposed in [13]. Specifically, they showed that
multisource AMP combined with location-based codeword
partition in an UMA setting allows not only for message
recovery, but also for the accurate estimation of the position
of each device. However, their framework does not account
for message collisions. AMP-based digital aggregation (AMP-
DA), introduced in the federated learning framework by Qiao
et al. [8], addresses collisions and mitigates fading via channel
pre-equalization at the transmitter. However, this approach
requires perfect channel state information (CSI) at the devices,
which is impractical because it is onerous to acquire.

In this paper, we show that the same two main tools
used in [12], namely, location-based codeword partition and
multisource AMP, allow for type estimation in a TUMA
system operating over a CF massive MIMO architecture,
without the need for CSI at the devices or the receiver. We
also illustrate that satisfactory performance can be achieved
when a centralized decoder is replaced by a more scalable
distributed decoder inspired by the distributed AMP (dAMP)
algorithm [14]. Numerical results demonstrate that the pro-
posed decoders outperform AMP-DA in estimating the type
when CSI at the devices in AMP-DA is imperfect.

Notation: System parameters are denoted by uppercase
nonitalic letters (e.g., A), sets by calligraphic letters (e.g.,
S), vectors by bold italic lowercase letters (e.g., x), and
matrices by bold nonitalic uppercase letters (e.g., X). We
write the element on the ath row and bth column of X as
[X]a,b, and the bth element of x as [x]b. We denote the
n × n identity matrix by In. Transposition and Hermitian
transposition are represented by T and H, respectively. We



access point

zone centroid

user device

Fig. 1. An example topology of the proposed TUMA framework within a
CF massive MIMO network.

denote the complex proper Gaussian vector distribution with
mean 0 and covariance A by CN (0,A), and its probability
density function by CN (·;0,A). The uniform distribution
over the interval (a, b) is denoted by Unif(a, b) and the ℓp-
norm by ∥·∥p; [n] is defined as {1, . . . , n}. We denote the
Kronecker delta function by δ(·), the Kronecker product by
⊗, and elementwise multiplication by ⊙; diag(x1, · · · , xn)
is a diagonal matrix with x1, . . . , xn as its diagonal entries.
The notation ∼i.i.d. indicates that the elements of a matrix
are independent and identically distributed (i.i.d.) according
to the specified distribution. Finally, we denote the probability
simplex over the set [M] by P([M]).

II. SYSTEM MODEL

We consider a CF system where B access points (APs) are
connected to a central processing unit (CPU) via fronthaul
links. The APs collaboratively serve single-antenna users,
randomly located in a coverage area D. The area is par-
titioned into U nonoverlapping zones {Du}Uu=1, such that
D =

⋃U
u=1Du and Du ∩ Du′ = ∅, ∀u ̸= u′. Each AP b

is located at position νb ∈ D and equipped with A antennas,
yielding F = A×B antennas in total. We illustrate an example
of system topology in Fig. 1, where the area is divided into a
3× 3 grid of square zones, with APs evenly placed along the
zone boundaries. While our model and design are applicable to
general topology, we use this specific topology in the simula-
tions in Section IV for its ability to ensure uniform coverage of
the area. The overall operation of the proposed TUMA frame-
work, encompassing message encoding, transmission through
the fading channel, and decoding at the receiver, is summarized
in Fig. 2. Next, we detail each block of this diagram.

A. Messages and Encoder

Each user k in zone u selects a message Wu,k from the
message set [M], where M is the total number of possible
messages. These messages might be obtained from a quanti-
zation of the user’s data, which may be, for example, local
updates in federated learning or targets’ position in multi-
target tracking.1 The system employs an UMA codebook

1Different from [10], where both quantization and communication are
considered in the TUMA model, we focus here for simplicity only on
communication, i.e., on the encoder and decoder design.

Encoder encuWu,k ×

√
NP

×

hT
u,k

∑ ∑
W

cu,Wu,k

Decoder dect̂
Y

user k in zone u

zone u From user 1 in zone u
...

From user Ku in zone u

...

From zone 1
...

From zone U

...

Fig. 2. Block diagram of the proposed TUMA framework with fading channel
in a CF system.

C ∈ CN×M, where N is the blocklength and M= U ·M is the
total number of codewords. The codebook is evenly partitioned
into zone-specific subcodebooks: C = [C1, · · · ,CU], where
Cu = [cu,1, · · · , cu,M] ∈ CN×M. The set of column vectors
of Cu forms the set of codewords for zone u, denoted as Cu =
{cu,1, · · · , cu,M}, where ∥cu,m∥22 = 1, ∀u ∈ [U], m ∈ [M].
The encoder encu : [M] → Cu maps each message Wu,k

to the codeword encu(Wu,k) = cu,Wu,k
. Note that all users

within the same zone use the same encoder.

B. Multiplicity and Type

Let Ku denote the number of active users in zone u
and Ka =

∑U
u=1 Ku denote the total number of active

users. Furthermore, let Ma,u denote the number of dis-
tinct transmitted messages in zone u. We denote the num-
ber of users transmitting the codeword m in zone u by
ku,m ∈ {0, 1, . . . ,Ku}. These numbers form the multiplicity
vector ku = [ku,1, · · · , ku,M]T with ∥ku∥1 = Ku and
∥ku∥0 = Ma,u. The global multiplicity vector is defined as
k = [k1, · · · , kM]T with km =

∑U
u=1 ku,m. The type is

then obtained as the vector of normalized multiplicities, i.e.,
t = [t1, · · · , tM]T with tm = km/Ka.

C. Channel Model

We index by (u, k) the kth user in zone u. The chan-
nel between user (u, k) and AP b is modeled as a quasi-
static Rayleigh fading channel. Specifically, the channel co-
efficients are independent across antennas, APs, and users.
The channel vector hu,k ∈ CF between user (u, k) and
all receive antennas is distributed as CN (0,Σ(ρu,k)), where
ρu,k denotes the position of user (u, k) and Σ(ρu,k) =
diag(γ1(ρu,k), · · · , γB(ρu,k)) ⊗ IA with γb(ρu,k) being the
large-scale fading coefficient (LSFC). When multiple users
transmit the same codeword, their contributions are super-
imposed at the receiver. For a codeword cu,m, the effective
channel vector is

xu,m =

{∑ku,m

k=1 :Wu,k=m hu,k if ku,m > 0,

0 if ku,m = 0.
(1)



The effective channel vectors for all codewords in zone u
form the effective channel matrix Xu = [xu,1, · · · ,xu,M]T ∈
CM×F. The aggregated received signal across all APs is

Y =
√
NP

U∑
u=1

CuXu +W, (2)

where W ∼i.i.d. CN (0, σ2
w) is the AWGN signal. The per-

symbol average transmit power is P. Therefore, the transmit
signal to noise ratio (SNR) is SNRtx = P/σ2

w.

D. Decoder

The decoder estimates the message type by using a decoding
function defined as dec : CN×F → P([M]). Given Y and
C, the decoder first estimates the multiplicities per zone,
k̂u = [k̂u,1, · · · , k̂u,M]T, and then computes the global multi-
plicity vector, k̂ =

∑U
u=1 k̂u. Finally, the type is estimated as

t̂ = k̂/∥k̂∥1. The performance of type estimation is evaluated
using the average total variation (TV) distance between the
type of the transmitted messages and its estimate, defined as

TV =
1

2
E
[∑M

m=1 |tm − t̂m|
]
, (3)

where the expectation is over the randomness of messages,
types, user positions, small-scale fading, and additive noise.

III. PROPOSED DECODER

We propose a decoder for the TUMA framework just
introduced that employs the multisource AMP algorithm [12].
To handle message collisions, we adapt the algorithm with a
modified Bayesian prior and a tailored denoiser that accounts
for multiplicities. Throughout, we assume the receiver has
access to the received signal, and has perfect knowledge of the
codebook C, the LSFC model γb(·), the number of active users
Ku, and the number of unique messages Ma,u in each zone.2

We first introduce a centralized decoder, then discuss approx-
imations for efficient implementation, and finally present a
scalable, distributed version of the proposed decoders.

A. Centralized Decoder

The centralized decoder employs the multisource AMP
algorithm to iteratively process the received signal and extract
necessary information for multiplicity estimation.

1) Multisource AMP: The algorithm performs T iterations,
where X

(t)
u , the estimate of the effective channel matrix for

zone u, and Z(t), the residual noise, are initialized as X(0)
u = 0

and Z(0) = Y. The updates are as follows

R(t)
u = CH

uZ
(t−1) +

√
NPX(t−1)

u , (4a)

X(t)
u = ηu,t(R

(t)
u ), (4b)

Γ(t)
u = CuX

(t)
u −

M

N
Z(t)Q(t)

u , (4c)

Z(t) = Y −
√
NP

U∑
u=1

Γ(t)
u . (4d)

2The model can be extended to handle scenarios where Ku and Ma,u

are random and unknown at the receiver. In this case, we initialize these
parameters and refine their values, and also the prior, along the AMP iterations.

Here, Q
(t)
u is the Onsager term computed at each iteration,

which will be described in Section III-A4. The denoiser ηu,t(·)
operates row-wise on R

(t)
u , leveraging the effective decoupled

channel model

r(t)u,m =
√
NPxu,m +φ(t), (5)

where φ(t) ∼ CN (0,T(t)) is the effective noise and T(t)

evolves according to state evolution, a tool for tracking the
AMP algorithm’s dynamics [15]. In multisource AMP, state
evolution ensures a block diagonal structure [13] for T(t) =

diag(τ
(t)
1 , · · · , τ (t)B )⊗ IA, where τ

(t)
b is given by

τ
(t)
b =

1

NA

A∑
a=1

ℜ
{
[(Z(t−1))HZ(t−1)](b−1)A+a, (b−1)A+a

}
.

(6)
2) Prior Selection: An appropriate prior is essential for

accurate decoding. We assume that for zone u, the active
message set of size Ma,u is uniformly selected from the M
messages. The multiplicities of active messages are then drawn
from a multinomial distribution with identical event probabil-
ities 1/Ma,u under the condition that the multiplicity is not
zero. We approximate the marginal of the multinomial distribu-
tion by a binomial distribution with parameters (Ku, 1/Ma,u),
truncated from 1 to Ku. The resulting approximate prior is

p(ku,m = k) = p0δ(k)

+ (1− p0)

Ku∑
l=1

Bin(l; Ku, 1/Ma,u)δ(k − l)∑Ku

i=1 Bin(i; Ku, 1/Ma,u)
, (7)

where p0 = 1−Ma,u/M is the probability that a message is
not activated, and Bin(·;n, p) denotes the binomial probability
mass function with parameters (n, p). Furthermore, the user
positions are assumed to be independently and uniformly dis-
tributed over the coverage region Du for zone u. Given ku,m =
k, the positions of users transmitting the mth codeword in
zone u are denoted by ρu,m,1:k = [ρu,m,1, · · · , ρu,m,k]. These
positions follow the distribution p(ρu,m,1:k | ku,m = k) =
1/|Du|k, where |Du| denotes the area of the region Du.

3) Denoiser: The Bayesian posterior mean estimator
(PME) of xu,m given R

(t)
u is derived using the decoupled

channel model (5). For simplicity, the iteration index (t) is
omitted in the following equations. The estimation process
exploits the Markov chain ku,m ↔ ρu,m,1:ku,m

↔ xu,m ↔
ru,m. Using this Markov property, we can express the PME
denoiser as

ηu(ru,m) =

Ku∑
k=1

E[xu,m|ru,m, ku,m = k] p(ku,m = k | ru,m).

(8)
Here, p(ku,m | ru,m) is the posterior probability of the
multiplicity ku,m, and E[xu,m | ru,m, ku,m] is the conditional
mean. For simplicity, let ku, ρu,1:ku

, ru, and xu denote
ku,m, ρu,m,1:ku,m , ru,m, and xu,m, respectively. Using Bayes’
theorem, we can express the posterior probability in (8) as

p(ku = k | ru) =
p(ru | ku = k) p(ku = k)∑Ku

l=0 p(ru | ku = l) p(ku = l)
. (9)



Using the Markov property and the prior on user positions
in (7), we can write the likelihood p(ru | ku = k) as

p(ru | ku = k) =
1

|Du|k

∫
Dk

u

p(ru | ρu,1:k) dρu,1:k. (10)

It follows from (1) and (5) that ru is distributed as∑ku

i=1 CN (0,NPΣ(ρu,i))+ CN (0,T). The likelihood in (10)
becomes

p(ru | k,ρu,1:k) = CN (ru;0,T+NP
∑k

i=1 Σ(ρu,i)). (11)

The conditional mean E[xu | ru, ku] is given by

E[xu | ru, ku]

=

∫
Dk

u

E[xu | ru, k,ρu,1:k] p(ρu,1:k | ru, k) dρu,1:k, (12)

where the MMSE estimator [16, Sec. 12.5] is

E[xu | ru, k,ρu,1:k]

= (
√
NP

∑k
i=1 Σ(ρu,i))(T+NP

∑k
i=1 Σ(ρu,i))

−1ru. (13)

The posterior of user positions in (12) is expressed as

p(ρu,1:k | ru, k) =
p(ru | ρu,1:k)∫

Dk
u
p(ru | ρ′

u,1:k) dρ
′
u,1:k

. (14)

We detail the derivations of (8)-(14) in Appendix A.
4) Onsager Correction: The Onsager correction ensures the

convergence of the AMP algorithm by compensating for the
correlations introduced during iterations. In multisource AMP,
as detailed in [13], the Onsager term Q

(t)
u ∈ CF×F in (4c) is

defined as

[Q(t)
u ]a,b =

1

M

M∑
m=1

∂[ηu,t(r
(t)
u,m)]b

∂[r
(t)
u,m]a

. (15)

The derivation of this term is provided in Appendix B.
5) Multiplicity Estimation: Finally, we compute the poste-

riors p(ku,m | ru,m) in (9) and perform maximum a posteriori
decoding as

k̂u,m = arg max
k∈{0,1,··· ,Ku}

p(ku,m | ru,m). (16)

Then, we estimate the type t̂ as outlined in Section II-D.

B. Approximation Methods for Efficient Implementation
The PME denoiser involves high-dimensional integrals in

(10), (12), and (14) that are computationally prohibitive for
high multiplicities. Therefore, we seek an efficient approxima-
tion. One could discretize the coverage area using a uniform
discrete grid. However, the complexity of this approach grows
exponentially with the number of points and the multiplicity,
making it impractical for large-scale systems. Instead, we
adopt Monte Carlo (MC) sampling. Specifically, we draw user
positions independently from the uniform prior over Du. Let
{ρi

u,1:k}
Ns
i=1 denote the MC samples of the positions of k users.

Using these samples, we approximate (12) as

E[xu | ru, k] ≈
∑Ns

i=1 E[xu | ru, k,ρi
u,1:k]p(ru | ρi

u,1:k)∑Ns

i=1 p(ru | ρi
u,1:k)

,

(17)

Algorithm 1 Centralized Decoder with Monte Carlo Sampling
Inputs: Received signal Y, UMA codebook C, factor NP,
sampled positions {ρi

u,1:k}
Ns
i=1 for k ∈ [Ku], u ∈ [U]

Output: Estimated type vector t̂
Initialization: Z(0) = Y, X(0)

u = 0 ∀u ∈ [U]

1. AMP for Channel Estimation:
1: Precompute {

∑k
j=1 Σ(ρ

i
u,1:j)}

Ns
i=1 for k ∈ [Ku], u ∈ [U]

2: for t← 1 to T do
3: for u← 1 to U do
4: R

(t)
u ← CH

uZ
(t−1) +

√
NPX

(t−1)
u

5: Compute T(t) as in (6)
6: X

(t)
u ← ηu,t(R

(t)
u ) using (8), (17) and (18)

7: Compute Q
(t)
u as in (15)

8: Γ
(t)
u ← CuX

(t)
u − M

NZ(t−1)Q
(t)
u

9: end for
10: Z(t) ← Y −

√
NP

∑U
u=1 Γ

(t)
u

11: end for
2. Type Estimation:

12: Estimate {k̂u}Uu=1 as in (16) using p(k | ru,m) already
computed in line 6 with (18)

13: t̂←
∑U

u=1 k̂u/∥
∑U

u=1 k̂u∥1

and (9) as

p(k | ru) ≈
∑Ns

i=1 p(ru | ρi
u,1:k)p(ku = k)∑Ns

i=1

∑Ku

l=0 p(ru | ρi
u,1:l)p(ku = l)

. (18)

The details are provided in Appendix C.
We summarize the proposed centralized decoder with MC

sampling-based approximation in Algorithm 1.

C. Complexity Analysis

For notational convenience, we assume an equal number
of active users per zone, i.e., Ku = Ka/U, u ∈ [U]. Under
this assumption, the complexity of the centralized decoder
per AMP iteration is O

(
M · (N + Ns · Ku · F)

)
, primarily

due to matrix-vector multiplications and MC sampling in the
PME denoiser. The presence of diagonal posterior covariance
matrices plays a crucial role in reducing denoising costs. To
further reduce the computational cost, the decoder can exclude
high multiplicities with negligible probabilities. By limiting
the analysis to a maximum multiplicity Kmax, the complexity
becomes O

(
M · (N + Ns ·Kmax · F)

)
.

D. Distributed Decoder

To address the scalability in CF systems [11], we propose a
distributed decoder inspired by dAMP [14]. Each AP locally
processes its received signal and transmits likelihoods for each
zone and each codeword to the CPU. Then, the likelihoods are
aggregated as

p(ru,m | ρu,1:k) =

B∏
b=1

pb(rb,u,m | ρu,1:k), (19)



where pb(rb,u,m | ρu,1:k) is the local likelihood computed at
AP b with MC sampling as in (18). The posterior probability
is then computed as

p(ku,m | ru,m) =
p(ku,m)

∏B
b=1 pb(rb,u,m | ρu,1:k)∑Ku

l=0 p(l)
∏B

b=1 pb(rb,u,m | ρu,1:l)
, (20)

as detailed in Appendix D. This design improves scalability by
reducing the CPU’s workload and fronthaul signaling through
local processing at APs. The CPU then performs posterior
computation and type estimation as in Section III-A.

IV. SIMULATION RESULTS

We consider a CF massive MIMO system with a 3 × 3
square grid layout, where each zone is a nonoverlapping region
as in Fig. 1. Each zone contains Ku = 20 active users,
transmitting Ma,u = 13 active messages. The set of active
messages is the same across zones. With U = 9, this results
in Ka = 180 active users in total. As in [12], the LSFC
is modeled as γb(ρ) = 1/(1 + (|ρ− νb|/d0)α), where the
pathloss exponent is α = 3.67 and the 3 dB cutoff distance is
d0 = 13.57m. The side length of each zone is set to 100m.
Each AP, equipped with A = 4 antennas, is evenly placed
along the zone boundaries, with B = 56 APs in total as
shown in Fig. 1. As in [12], we define the received SNR as
SNRtx = SNRrx × (1 + (ς/d0)

α), where ς is the distance
between a zone centroid (green dot in Fig. 1) and its closest
AP. We fix the average codeword energy as NP = 1. The
codewords {cu,m} are independently drawn from a Gaussian
random coding ensemble, cu,m ∼i.i.d. CN (0, 1/N).3 We set the
number of MC samples to Ns = 500 and the number of AMP
iterations to T = 20. In each simulation, the set of active
messages is drawn uniformly at random, their multiplicities
are sampled from a multinomial distribution as described in
Section III-A2, and a new codebook is generated. The TV
distance (3) is averaged over 1000 independent simulations.4

In Fig. 3, we show the average TV distance versus log2 M
for the centralized decoder for SNRrx = −30 dB. Smaller M
leads to lower TV because fewer codewords make estimation
easier, despite higher message collisions. In contrast, larger
M makes estimation more challenging, but increasing the
blocklength significantly improves performance.

In Fig. 4, we compare TV for centralized and distributed
decoders as a function of SNRrx for N = 1024 and M = 28.
The centralized decoder consistently outperforms the dis-
tributed decoder. However, the distributed decoder reduces the
computational cost at the CPU as well as the fronthaul rate.
This makes it suitable for large-scale CF systems.

We next compare our decoders with AMP-DA [8], which
lets the users pre-equalize the channel to obtain an effective
AWGN channel model, and then apply scalar AMP [17,
Sec. IV-C] for type estimation. We emphasize that the pre-
equalization step relies on the availability of CSI at the users.

3While a Gaussian codebook is used for performance evaluation, the
proposed decoders are compatible with general codebooks.

4The code to reproduce the numerical results is available at https://github.
com/okumuskaan/tuma fading cf.
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Fig. 5. The average total variation TV vs. maximum phase ϕmax for imperfect
CSI with M = 28 and SNRrx = 10dB.

Here, we assume that each user has an imperfect knowledge
ĥ of its channel vector h. Specifically, ĥ = h ⊙ ejϕϕϕ with
ϕϕϕ ∼i.i.d. Unif(0, ϕmax) is used to perform pre-equalization.
Our decoders do not require CSI, neither at the users nor
the receiver, and are thus insensitive to ϕmax. In Fig. 5,
we demonstrate that our centralized and distributed decoders
outperform AMP-DA when the maximum phase shift ϕmax
exceeds approximately π/9 and π/8, respectively.

V. CONCLUSION

We extended the TUMA framework proposed in [10] to the
fading channels. Specifically, we proposed centralized and dis-
tributed decoders for TUMA over CF massive MIMO systems.
The centralized decoder demonstrates superior performance
and robustness, particularly in the low SNR regime and under
imperfect CSI. The distributed decoder, while less accurate,
provides a scalable and cost-effective solution for large-scale
systems. As in [12], our decoders rely on multisource AMP,
suitably modified to handle message collisions, and use a
location-based codeword partition to mitigate such collisions.

https://github.com/okumuskaan/tuma_fading_cf
https://github.com/okumuskaan/tuma_fading_cf


APPENDIX

A. Derivations for the Denoiser

For notational simplicity, as done in Section III-A3, we let
ku, ρu,1:ku

, ru, and xu represent ku,m, ρu,m,1:ku,m
, ru,m, and

xu,m, respectively. Additionally, we omit the AMP iteration
index t throughout the derivations, as the steps are structurally
identical for different t and m. These simplifications stream-
line the presentation without loss of generality.

1) Posterior Probability of Multiplicities: The posterior
probability p(ku | ru) is derived using Bayes’ theorem as

p(ku = k | ru) =
p(ru | ku = k)p(ku = k)∑Ku

l=0 p(ru | ku = l)p(ku = l)
. (21)

The prior p(ku = k) is given in (7) and the likelihood p(ru |
ku = k) is expressed as

p(ru | ku)

=

∫
Dku

u

p(ru | ku,ρu,1:ku
)p(ρu,1:ku

| ku) dρu,1:ku
(22a)

=
1

|Du|ku

∫
Dku

u

p(ru | ku,ρu,1:ku
) dρu,1:ku

, (22b)

where in (22a), we apply the law of total probability, and
in (22b), we use the uniform prior p(ρu,1:ku

| ku) = 1/|Du|ku

as specified in (7).
2) Likelihood of Received Signal: Based on the effec-

tive channel model (5), we have that ru is distributed as∑ku

i=1 CN (0,NPΣ(ρu,i)) + CN (0,T). Therefore, the likeli-
hood p(ru | ku,ρu,1:ku

) is given by

p(ru | ku,ρu,1:ku
) = CN

(
ru;0,T+NP

ku∑
i=1

Σ(ρu,i)

)
.

(23)
3) Posterior Distribution of Positions: The posterior

p(ρu,1:ku | ru, ku), used to compute the conditional mean
in (12), is derived as

p(ρu,1:ku
| ru, ku)

=
p(ru | ρu,1:ku

, ku)p(ρ1:ku
| ku)

p(ru | ku)
(24a)

=
p(ru | ρu,1:ku

)p(ρu,1:ku
| ku)∫

Dku
u

p(ru | ku,ρ′
u,1:ku

)p(ρ′
u,1:ku

| ku) dρ′
1:ku

(24b)

=
p(ru | ρu,1:ku)/|Du|ku∫

Dku
u
(p(ru | ρ′

u,1:ku
)/|Du|ku) dρ′

1:ku

(24c)

=
p(ru | ρu,1:ku)∫

Dku
u

p(ru | ρ′
u,1:ku

) dρ′
1:ku

. (24d)

Here, (24a) follows from Bayes’ theorem, (24b) from the law
of total probability and the Markov chain ku ↔ ρu,1:ku

↔ ru,
(24c) from the uniform prior p(ρu,1:ku

| ku) = 1/|Du|ku ,
and (24d) simplifies the terms.

4) Conditional Mean of xu: Using the law of total proba-
bility, we express the conditional mean E[xu | ru, ku] as

E[xu | ru, ku]

=

∫
Dku

u

E[xu | ru, ku,ρu,1:ku ] p(ρu,1:ku | ru, ku) dρu,1:ku .

(25)

Here, E[xu | ru, ku,ρu,1:ku ] is given by the MMSE estimator
based on the effective decoupled channel model (5), i.e.,

E[xu | ru, ku,ρu,1:ku
]

=

(
√
NP

ku∑
i=1

Σ(ρu,i)

)(
T+NP

ku∑
i=1

Σ(ρu,i)

)−1

ru. (26)

Finally, the denoiser η(ru), expanded as in (8), is computed
by combining (21)–(26).

B. Derivations for the Onsager Correction

As in Appendix A, we let ρu,1:ku denote ρu,m,1:ku,m and
omit the AMP iteration index t. The Onsager correction term
Qu ∈ CF×F is defined as the average Jacobian matrix of the
denoiser function η(·), i.e.,

[Qu]a,b =
1

M

M∑
m=1

∂[η(ru,m)]b
∂[ru,m]a

. (27)

Here, the derivatives are being expressed using Wirtinger
derivatives for complex variables, where ∂(·)/∂r =
(∂(·)/∂rx − j∂(·)/∂ry) /2, with r = rx + jry .

Let ru represent ru,m for simplicity. Using the calcula-
tion in Appendix A, we decompose the denoiser component
[η(ru)]b as

[η(ru)]b = [ru]b

Ku∑
k=1

Ab(ru, k)

B(ru, k)︸ ︷︷ ︸
Fb(ru,k)

· C(ru, k)

D(ru)︸ ︷︷ ︸
G(ru,k)︸ ︷︷ ︸

Hb(ru)

(28)

where

Ab(ru, k) =

∫
Dk

u

cb,ρu,1:k
p(ru | ρu,1:k) dρu,1:k, (29a)

cb,ρu,1:k
=

√
NP[

∑k
i=1 Σ(ρu,i)]b,b

[T]b,b +NP[
∑k

i=1 Σ(ρu,i)]b,b
, (29b)

B(ru, k) =

∫
Dk

u

p(ru | ρu,1:k) dρu,1:k, (29c)

C(ru, k) =

∫
Dk

u

p(ru | ρu,1:k) p(ku = k) dρu,1:k, (29d)

D(ru) =

Ku∑
l=0

∫
Dk

u

p(ru | ρu,1:l) p(ku = l) dρu,1:l. (29e)

Note that (29b) is derived using the fact that T and∑k
i=1 Σ(ρu,i) are both diagonal matrices. Then, the derivative

of the denoiser is computed as

∂[η(ru)]b
∂[ru]a

=
∂

∂[ru]a
([ru]bHb(ru)) (30a)



= δ(a− b)Hb(ru) + [ru]b
∂Hb(ru)

∂[ru]a
, (30b)

where we note that Hb(ru) ∈ R. Expanding Hb(ru), we have

∂Hb(ru)

∂[ru]a
= G(ru, k)

∂Fb(ru, k)

∂[ru]a
+ Fb(ru, k)

∂G(ru, k)

∂[ru]a
.

(31)
The derivatives of Fb(ru, k) and G(ru, k) are given by

∂Fb(r, k)

∂[r]a
=

∂Ab(r,k)
∂[r]a

− Fb(r, k)
∂B(r,k)
∂[r]a

B(r, k)
, (32a)

∂G(r, k)

∂[r]a
=

∂C(r,k)
∂[r]a

−G(r, k)∂D(r)
∂[r]a

D(r)
. (32b)

The derivatives on the right hand side of (32a) and (32b) are

∂Ab(ru, k)

∂[ru]a
=

∫
Dk

u

cb,ρu,1:k

∂p(ru | ρu,1:k)

∂[ru]a
dρu,1:k, (33a)

∂B(ru, k)

∂[ru]a
=

∫
Dk

u

∂p(ru | ρu,1:k)

∂[ru]a
dρu,1:k, (33b)

∂C(ru, k)

∂[ru]a
=

∫
Dk

u

p(ku = k)
∂p(ru | ρu,1:k)

∂[ru]a
dρu,1:k,

(33c)

∂D(ru)

∂[ru]a
=

Ku∑
l=0

∫
Dk

u

p(ku = l)
∂p(ru | ρu,1:l)

∂[ru]a
dρu,1:l.

(33d)

Since p(ru | ρu,1:k) = CN (ru;0,T+ NP
∑k

i=1 Σ(ρu,i)), its
derivative is
∂p(ru | ρu,1:k)

∂[ru]a

= p(ru | ρu,1:k)
∂

∂[ru]a

F∑
f=1

−([ru]2f,x + [ru]
2
f,y)

[T]f,f +NP[
∑k

i=1 Σ(ρu,i)]f,f
,

(34)

given [ru]a = [ru]a,x + j[ru]a,y . Derivation continues as
follows

∂
∑F

f=1

−([ru]
2
f,x+[ru]

2
f,y)

[T+NP
∑k

i=1 Σ(ρu,i)]f,f

∂[ru]a,x
=

−2[ru]a,x
[T+NP

∑k
i=1 Σ(ρu,i)]a,a

,

(35)

∂
∑F

f=1

−([ru]
2
f,x+[ru]

2
f,y)

[T+NP
∑k

i=1 Σ(ρu,i)]f,f

∂[ru]a,y
=

−2[ru]a,y
[T+NP

∑k
i=1 Σ(ρu,i)]a,a

,

(36)

By applying Wirtinger derivative, we obtain that

∂
∑F

f=1

−([ru]
2
f,x+[ru]

2
f,y)

[T+NP
∑k

i=1 Σ(ρu,i)]f,f

∂[ru]a
=

−[ru]∗a
[T+NP

∑k
i=1 Σ(ρu,i)]a,a

.

(37)

By using (37) in (34), we get that

∂p(ru | ρu,1:k)

∂[ru]a
=

−[ru]∗a p(ru | ρu,1:k)

[T+NP
∑k

i=1 Σ(ρu,i)]a,a
. (38)

Substituting (38) into (33), we obtain that

∂Ab(ru, k)

∂[ru]a
= −[ru]∗a

∫
Dk

u

cb,ρu,1:k
p(ru | ρu,1:k)

[T+NP
∑k

i=1 Σ(ρu,i)]a,a
dρu,1:k,

(39a)
∂B(ru, k)

∂[ru]a
= −[ru]∗a

∫
Dk

u

p(ru | ρu,1:k)

[T+NP
∑k

i=1 Σ(ρu,i)]a,a
dρu,1:k,

(39b)
∂C(ru, k)

∂[ru]a
= −[ru]∗a

∫
Dk

u

p(ku = k) p(ru | ρu,1:k)

[T+NP
∑k

i=1 Σ(ρu,i)]a,a
dρu,1:k,

(39c)
∂D(ru)

∂[ru]a
= −[ru]∗a

·
Ku∑
l=0

∫
Dl

u

p(ku = l) p(ru | ρu,1:l)

[T+NP
∑k

i=1 Σ(ρu,i)]a,a
dρu,1:l.

(39d)

Finally, by combining (30), (31), (32), and (39), we obtain
the derivative ∂[η(ru)]b/∂[ru]a.

C. Derivations for Monte Carlo Sampling-Based Approxi-
mated Denoiser

Here, we derive the approximated expressions for the
Bayesian PME and the posterior probability of multiplic-
ities using MC methods, as introduced in (17) and (18).
As in Appendix A, we let ku, ρu,1:ku

, ru, and xu denote
ku,m, ρu,m,1:ku,m , ru,m, and xu,m, respectively, and omit
the AMP iteration index t. Using MC sampling, ρu,1:ku

is sampled independently from the uniform prior over Du.
Let {ρi

u,1:ku
}Ns
i=1 denote these samples. We approximate the

integral
∫
Dku

u
f(ρu,1:ku

)dρu,1:ku
as |Du|ku

Ns

∑Ns

i=1 f(ρ
i
u,1:ku

).
As a result, the PME is approximated as

E[xu | ru, ku]

=

∫
Dku

u
E[xu | ru, ku,ρu,1:ku

] p(ru | ρu,1:ku
) dρu,1:ku∫

Dku
u

p(ru | ρu,1:ku) dρu,1:ku

(40a)

≈
|Du|ku

Ns

∑Ns

i=1 E[xu | ru, ku,ρi
u,1:ku

] p(ru | ρi
u,1:ku

)

|Du|ku

Ns

∑Ns

i=1 p(ru | ρi
u,1:ku

)

(40b)

=

∑Ns

i=1 E[xu | ru, ku,ρi
u,1:ku

] p(ru | ρi
u,1:ku

)∑Ns

i=1 p(ru | ρi
u,1:ku

)
, (40c)

where p(ru | ρi
u,1:ku

) is the likelihood of the received signal
given the sampled positions, computed as in equation (23). The
posterior probability p(ku | ru) is approximated similarly.

D. Distributed Multisource AMP

The distributed version of the multisource AMP algorithm
decentralizes computations across the APs.



1) Distributed Likelihood Computations: In the distributed
AMP setup, each AP b processes its local effective received
signal rb,u,m ∈ CA for each codeword cu,m. The local
likelihood pb(rb,u,m | ρu,1:k) is computed as

pb(rb,u,m | ρu,1:k) =
1

πA|Covb|
exp

(
−rHb,u,mCov−1

b rb,u,m
)
,

(41)

where Covb is the local covariance matrix given by

Covb = Tb +NP

k∑
i=1

Σb(ρu,i). (42)

Here, Tb is the covariance matrix of the local residual noise
computed at AP b and Σb(ρ) = γb(ρ)IA is the LSFC between
the user in position ρ and AP b. The aggregated likelihood at
the CPU is then computed as

p(ru,m | ρu,1:k) =

B∏
b=1

pb(rb,u,m | ρu,1:k). (43)

2) Posterior Probability in Distributed AMP: Using the
distributed likelihood (41), the posterior probability p(ku,m |
ru,m) is computed as

p(ku,m = k | ru,m)

=
p(ku,m = k)

∏B
b=1 pb(rb,u,m | ρu,1:k)∑Ku

l=0 p(ku,m = l)
∏B

b=1 pb(rb,u,m | ρu,1:l)
. (44)

3) Distributed Onsager Correction: The Onsager correc-
tion term in distributed AMP is computed locally at each AP
b as

[Qu,b]a,c =
1

M

M∑
m=1

∂[ηu,t(rb,u,m)]c
∂[rb,u,m]a

, (45)

and aggregated at the CPU as

[Qu]a,c =

B∑
b=1

[Qu,b]a,c. (46)

REFERENCES

[1] Y. Polyanskiy, “A perspective on massive random-access,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), 2017, pp. 2523–2527.

[2] V. K. Amalladinne, J.-F. Chamberland, and K. R. Narayanan, “A coded
compressed sensing scheme for unsourced multiple access,” IEEE Trans.
Inf. Theory, vol. 66, no. 10, pp. 6509–6533, 2020.

[3] A. Fengler, S. Haghighatshoar, P. Jung, and G. Caire, “Non-Bayesian ac-
tivity detection, large-scale fading coefficient estimation, and unsourced
random access with a massive MIMO receiver,” IEEE Trans. Inf. Theory,
vol. 67, no. 5, pp. 2925–2951, 2021.

[4] A. Fengler, P. Jung, and G. Caire, “SPARCs for unsourced random
access,” IEEE Trans. Inf. Theory, vol. 67, no. 10, pp. 6894–6915, 2021.

[5] K.-H. Ngo, A. Lancho, G. Durisi, and A. Graell i Amat, “Unsourced
multiple access with random user activity,” IEEE Trans. Inf. Theory,
vol. 69, no. 7, pp. 4537–4558, 2023.

[6] J. Hoffman and R. Mahler, “Multitarget miss distance via optimal
assignment,” IEEE Trans. Syst. Man. Cybern. A Syst. Human., vol. 34,
no. 3, pp. 327–336, May 2004.
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