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Abstract—We derive an achievability bound to quantify the
performance of a type-based unsourced multiple access system—
an information-theoretic model for grant-free multiple access
with correlated messages. The bound extends available achiev-
ability results for the per-user error probability in the unsourced
multiple access framework, where, different from our setup,
message collisions are treated as errors. Specifically, we provide
an upper bound on the total variation distance between the type
(i.e., the empirical probability mass function) of the transmitted
messages and its estimate over a Gaussian multiple access
channel. Through numerical simulations, we illustrate that our
bound can be used to determine the message type that is less
efficient to transmit, because more difficult to detect. We finally
show that a practical scheme for type estimation, based on coded
compressed sensing with approximate message passing, operates
approximately 3 dB away from the bound, for the parameters
considered in the paper.

I. INTRODUCTION

Next generation wireless communication systems should
support accurate decision-making from distributed network
data [1]. Typically, decision-making is performed at a central
node, to which data-collecting entities (e.g., Internet of Things
(IoT) sensors) transmit their information. The central node is
often interested in a function of the received data. For instance,
applications like over-the-air aggregation in wireless federated
learning [2], point cloud transmission [3], and majority-vote
computation [4] involve estimating the type, i.e., the empirical
probability mass function (PMF) of the received data. In this
paper, we establish a performance bound for communication
systems employing type-based decision-making. Specifically,
we generalize the information-theoretic analysis of the un-
sourced multiple-access (UMA) model presented in [5] to the
case of type-based unsourced multiple-access (TUMA).

The UMA framework is relevant for massive IoT connec-
tivity. In UMA, all transmitters share a common codebook as
well as the communication medium (e.g., an additive white
Gaussian noise channel), and the receiver produces a list of
the transmitted codewords. In [5], an achievability bound on
the per-user error probability is obtained under the assumption
that the active transmitters select their message uniformly at
random. In the analysis, the event that two or more users select
the same codeword (message collision) is modeled as an error.
Indeed, the probability that this occurs is typically negligible
for the parameters considered in [5] (hundreds of active users
and 2100 messages). On the contrary, in this paper, we are

interested in the case in which multiple users transmit the
same message and the receiver is tasked with estimating the
set of transmitted messages along with their multiplicities, i.e.,
the number of users sending each message.

Type-based multiple access was originally introduced in [6]
in the context of parameter estimation from distributed data.
The TUMA framework has been recently introduced in [7], in
the context of multi-target tracking. There, the authors analyze
the performance of different compressed-sensing-inspired al-
gorithms for type estimation. However, no performance bound
is derived. This work addresses such a gap.

Contributions: We derive a numerically computable up-
per bound on the total variation distance between the trans-
mitted message type and the estimated type for the TUMA
model. Our analysis relies on some of the tools used in [5],
such as Chernoff’s bound and Gallager’s ρ-trick. The novel
challenge in the TUMA setting arises from the presence of
additional error events, such as the incorrect estimation of
message multiplicities, which make the parametrization and
partitioning of error events more complex. In contrast, in
the UMA case, the error events can be straightforwardly
parametrized by the number of misdetected or impostor (i.e.,
false-positive) messages, enabling a simple partitioning of the
error events and a subsequent application of Gallager’s ρ-trick.
In the TUMA setting, the message multiplicity errors make the
application of Gallager’s ρ-trick more nuanced.

We use our bound to numerically characterize, for a selected
family of TUMA message types, and for a fixed number of
active users, the minimum energy per bit (Eb/N0) required to
achieve a target estimation error, as a function of a distance
metric between the considered type and an UMA uniform
type. We measure this distance in terms of total variation. Our
analysis reveals that the required Eb/N0 is maximized for
intermediate distance values and exceeds the Eb/N0 required
in the UMA case. However, as the distance approaches one,
the Eb/N0 reduces significantly, and drops below the value
required for UMA, due to the reduced number of multiplicities
to detect and the higher power allocated per transmitted
message. Finally, we present an adaptation to TUMA of the
coded compressed sensing with approximate message passing
(CCS-AMP) scheme proposed in [8]. The gap between the
Eb/N0 value predicted by our bound and the value required
by the proposed CCS-AMP scheme is around 3 dB.



Notation: We denote scalar system parameters by upper-
case non-italic letters, scalar random variables by uppercase
italic letters, deterministic scalars by lowercase italic letters,
vectors by uppercase boldface italic letters, and deterministic
vectors by lowercase boldface italic letters, e.g., Ka, X , x, X ,
and x, respectively. We let IIIN be the N × N identity matrix
and 0 be the all-zero vector. We denote the N-dimensional
Euclidean space by RN, the set of naturals as N, N∪{0} as N0,
and its N-fold product as NN

0 . We set [m : n] = {m, . . . , n},
m ≤ n, and m, n ∈ N; if m = 1, [m : n] = [n]. For x ∈ R,
⌈x⌉ is its ceiling value. For x ∈ RN and S ⊆ [N], xS denotes
the restriction of the vector to S; its dimension is |S|. For
a vector n, Supp(n) is the set of its non-zero entries. We
denote the Gaussian distribution with mean 0 and covariance
matrix AAA by N (0,AAA). We use ∥·∥ for the ℓ2-norm and ∥·∥1
for the ℓ1-norm. We use ∼ to specify the distribution of a
random variable, ⊥⊥ for independence, and D

= for equality in
distribution. We denote the indicator function as 1 {·}, and the
total variation distance as TV

(
·, ·
)
. Unless stated otherwise, all

logarithms are natural.

II. SYSTEM MODEL

We consider a scenario wherein a large number of transmit-
ters (users), of which only Ka are active, communicate with
a common receiver, over N uses of a real-valued Gaussian
multiple access channel (GMAC). We assume that Ka is fixed
and known to the receiver. The transmitters communicate over
N channel uses. Such devices could be, for instance, sensors
deployed to track the states of certain targets. The total number
of states could potentially be large and each state corresponds
to a message chosen by a transmitter. We denote the total
number of messages by M. However, we assume that only
Ma out of M messages are active, and the active message
set is denoted as Ma. In a target-tracking scenario, the active
messages could correspond to target locations within a small
region near the sensors. We assume that each user chooses a
message from Ma. This results in a type over [Ma], to be
defined shortly. We assume Ma ≪ M and Ma ≤ Ka, e.g.,
Ma = 101, Ka = 102, and M = 104. Furthermore, we assume
that Ma is known but Ma is unknown to the receiver.

The channel output is given by

Y =

Ka∑
k=1

xk +Z (1)

where Z ∼ N (0, IIIN) is the N-dimensional noise vector,
independent of the channel input vector xk of user k, k ∈ [Ka],
and Y is the channel output. We assume that the channel
inputs satisfy a maximum power constraint

∥xk∥2 ≤ NP, k ∈ [Ka]. (2)

In our setting, multiple users may transmit the same mes-
sage to the receiver. For instance, in the multi-target tracking
problem, multiple sensors might report the same location of
a tracked target. We utilize an Ma-sparse vector in NM

0 to
describe the list of transmitted/decoded messages and their

multiplicities. We refer to this vector as a multiplicity vector.
Specifically, let n = [n1, . . . , nM]T be the multiplicity vector
corresponding to the messages transmitted by the users. If we
denote by Wk the message chosen by user k, we have that

nm =

Ka∑
k=1

1 {Wk = m} . (3)

We have ∥n∥1 = Ka and its support

Supp(n) = {m ∈ [M] : nm > 0} (4)

has cardinality Ma. For the UMA case [5], nm = 1 for all
transmitted messages, and ∥n∥1 = |Supp(n) |.

The decoder observes Y and obtains an estimate
N̂ = [N̂1, . . . , N̂M]T of n. We assume that the de-
coder’s estimate is subject to a constraint on the aver-
age total variation distance. Specifically, given the types
t = n/Ka and T̂ = N̂/Ka, the decoder’s estimate must sat-
isfy E

[
TV

(
t, T̂

)]
≤ ϵ, where the expectation is taken over the

distributions of the channel input and the noise. Furthermore,
ϵ ∈ (0, 1) is pre-specified, and

TV
(
t, T̂

)
=

1

2

M∑
m=1

|tm − T̂m|. (5)

We shall refer to the setting just introduced as the TUMA
setting. Now, we provide a formal definition of a code for
this setting. To this end, it is convenient to define the set of
multiplicity vectors on [M] as

P =
{
n ∈ NM

0 : |Supp(n) | = Ma, ∥n∥1 = Ka

}
.

Definition 1 (TUMA Code). An (M,N,P, ϵ) TUMA code for a
GMAC with Ka active users and Ma active messages resulting
in the message multiplicity vector n, consists of an encoder
ξ : [M] 7→ RN that produces a channel input satisfying (2)
and a decoder ψ : RN 7→ P that produces a multiplicity
vector based on the output Y of the GMAC, and satisfies the
constraint E[TV

(
n/Ka, ψ(Y )/Ka

)
] ≤ ϵ.

III. A RANDOM-CODING BOUND FOR TUMA

Our main result is a random-coding achievability bound
stated in the next theorem.

Theorem 1 (Random-Coding Bound). For a GMAC with Ka

active users and Ma active messages, and a fixed message
multiplicity vector n with |Supp(n) | = Ma and ∥n∥1 = Ka,
there exists a (M,N,P, ϵ) TUMA code for which

ϵ ≤
Ka∑
t=1

t

Ka
p̃t + p0 + p1. (6)

Here,

p0 = Ma P
[
∥C1∥2 > NP

]
(7)

with C1 ∼ N (0,P′IIIN), and 0 < P′ < P,

p1 = e−
Nδ2

8 (8)



with

δ ∈
(
0,

1

1− 2δ∗min

− 1

)
(9)

and

δ∗min =
1

2
− min

t,S,ℓ,i,j,ρ
λ∗ (10)

where λ∗ defined in (21). Finally,

p̃t =

Ma∑
ℓ=0

∑
S∈Sℓ

Ma−ℓ∑
i=0

∑
N∈Ni

t−Ma+ℓ+i∑
j=ℓ

eρNR−NE0 . (11)

In both (10) and (11), ρ ∈ [ρmin, 1] for a pre-fixed
ρmin ∈ (0, 1), and t, S , ℓ, i, j in (10) are optimized over
the range of values given in (6) and (11),

Sℓ = {S ⊆ [Ma] : |S| = ℓ, ∥nS∥1 ≤ t} (12)
Ni = {N ⊆ [Ma] \ S : |N | = i, ∥nN ∥1 ≥ t+ i− ∥nS∥1}.

(13)

Furthermore,

R =
1

N
logM′ (14)

E0 =
1

2
log (1− 2bρ) + ρa (15)

M′ =
Mℓ

ℓ!

(
j − 1

ℓ− 1

)(
t− j − 1

Ma − ℓ− i− 1

)
min

{
M+

0 ,M
+
}

(16)

M+
0 =

(
t− ∥nS∥1 + i− 1

i− 1

)
(17)

M+ =

(
∥nS∥1 + ∥nN ∥1 − t− 1

i− 1

)
(18)

a =
1

2
log(1 + 2P′cminλ

∗) (19)

b = λ∗
(
1− 1

1 + 2cminP′λ∗

)
(20)

λ∗ =
(cminP

′ − 2) +
√

(cminP′ − 2)2 + 4cminP′(1 + ρ)

4cminP′(1 + ρ)

∈
(
0,

1

2

)
(21)

cmin =

⌈
∥nS∥21
ℓ

⌉
+

⌈
(t− ∥nS∥1)2

i

⌉

+

⌈
(t− j)

2

Ma − ℓ− i

⌉
+

⌈
j2

ℓ

⌉
. (22)

The proof of the theorem has a structure similar to the proof
of [5, Theorem 1], in which an UMA scenario is considered.
Specifically, it relies on random coding, Chernoff’s bound,
and the use of Gallager’s ρ-trick [9, Eq. (2.28)]. The use of
Gallager’s ρ-trick is more delicate in the TUMA case. Indeed,
in the UMA setting, the error events, i.e., the misdetection of
some messages and the inclusion of impostor messages, are
such that the number of misdetected messages coincides with
the number of impostor messages. This enables a convenient

partitioning of the error event space, achieved by parametriz-
ing the error events through the number of misdetected (or
impostor) messages. This, in turn, facilitates the application
of Gallager’s ρ-trick.

In TUMA, however, the space of error events is much
larger. Indeed, a TUMA decoder can incorrectly estimate the
multiplicities of correctly decoded messages, either inflating
or deflating them. As a consequence, not even the sum of
multiplicities of the misdetected messages coincides with that
of the impostor messages. This necessitates a more nuanced
parametrization of the error events, which needs to account for
both the number and the position of the misdetected messages,
impostor messages, and inflated and deflated detected mes-
sages to effectively partition the error event space. Using this
novel parametrization, we upper-bound the probability of error
events in each partition by analyzing its Chernoff’s exponent,
conditioned on a high-probability set. This leads to the term p1
in (8). Furthermore, to reduce complexity, we apply Gallager’s
ρ-trick only once, unlike in [5], where it is applied twice.

One final challenge is that the chosen performance metric,
i.e., the total variation distance, is a nonlinear function of
the multiplicity vectors. This nonlinearity complicates the
estimation of the total number of error events contributing to
the union bound summation in Gallager’s ρ-trick. While in the
UMA case this number can be estimated using a straightfor-
ward counting argument, our estimation involves linearizing
the total variation distance and leveraging expressions for
integer-valued solutions to partition equations (see Lemma 4).

Now, we present the proof of Theorem 1.

Proof of Theorem 1. We present the proof in multiple steps.
First, we state some supporting lemmas. The proof of these
lemmas are delegated to the appendices.

In Lemma 1 below, we prove that the ℓ1 distance between
the transmitted multiplicity vector and the decoded multiplicity
vector is even and does not exceed 2Ka.

Lemma 1. Fix any two multiplicity vectors n and n̂ such
that ∥n∥1 = ∥n̂∥1 = Ka, n ̸= n̂, Supp(n) ⊂ [M],
Supp(n̂) ⊂ [M], |Supp(n) | = |Supp(n̂) | = Ma and
Ka ≥ Ma. Then, ∥n− n̂∥1 = 2t, for some t ∈ [Ka].

Proof. See Appendix A.

In Lemma 2 below, we solve an optimization problem that
will turn out to be useful in analyzing the Chernoff’s exponent.

Lemma 2. Let ρ ∈ (0, 1], P′ > 0, and c > 0. Define

E′
0(λ) =

ρ

2
log

(
1 + 2P′cλ

)
+
1

2
log

(
1− 2ρλ

(
1− 1

1 + 2P′cλ

))
(23)

where λ > 0 satisfies

1− 2ρλ

(
1− 1

1 + 2P′cλ

)
> 0. (24)

Then E′
0 is maximized at λ∗, and λ∗ < 1/2.



Proof. See Appendix B.

In Lemma 3 below, we prove that a certain function is
monotonically decreasing. We will use this result to upper-
bound an exponential term arising from Chernoff’s bound.

Lemma 3. For N ∈ Z+ and δ ∈ (0, 1), let z ∈ RN be such
that ∥z∥2 ≤ N(1 + δ). Furthermore, let ρ ∈ (0, 1], P′ > 0,
and λ∗ as in (21). Define

f(c) = λ∗
(
∥z∥2 − ∥z∥2

1 + 2cP′λ∗

)
− N

2
log(1 + 2cP′λ∗) .

(25)

Then, for c > 0, f(c) is monotonically decreasing in c.

Proof. See Appendix C.

Finally, we present a lemma in which we bound the number
of multiplicity vectors at a given ℓ1 distance from the trans-
mitted multiplicity vector. Furthermore, we provide a lower-
bound on the ℓ2 distance between any decoded multiplicity
vector and the transmitted multiplicity vector.

Lemma 4. Fix a multiplicity vector n such that
∥n∥1 = Ka, |Supp(n) | = Ma, Supp(n) ⊂ [M],
and Ka ≥ Ma. Fix t ∈ [Ka]. Let n̂ denote a generic
multiplicity vector such that ∥n̂∥1 = Ka, |Supp(n̂) | = Ma,
Supp(n̂) ⊂ [M]. Furthermore, let S = Supp(n) ∩ Supp(n̂)

c,
|S| = ℓ, ∥nS∥1 ≥ t, Ŝ = Supp(n)

c ∩ Supp(n̂), |Ŝ| = ℓ,
∥n̂Ŝ∥1 = j,

N = {m ∈ Supp(n) ∩ Supp(n̂) : nm ≥ n̂m} (26)

with |N | = i, and N̂ = Supp(n) ∩ Supp(n̂) ∩ N c. Then,
for fixed ℓ, S, i, N , and j, the total number of vectors n̂
satisfying ∥n − n̂∥1 = 2t is utmost M′, where M′ is defined
in (16). Furthermore, such an n̂ satisfies ∥n − n̂∥2 ≥ cmin,
with cmin defined in (22).

Proof. See Appendix D.

The proof of the above lemma involves linearizing the
equation ∥n − n̂∥1 = 2t, and counting the integer valued
solutions of the resulting partition equations to obtain M′.

1) Codebook Generation: For m ∈ [M] and P′ < P, we
generate the codewords Cm ∼ N (0,P′IIIN) independently. To
send message Wk, the transmitter chooses codeword CWk

and
set Xk = 1

{
∥CWk

∥2 ≤ NP
}
CWk

.
2) Decoder: The decoder outputs the multiplicity vector

N̂ ∈ P minimizing ∥Y −C(N̂)∥2, where

C(N̂) =
∑

m∈Supp(N̂)

N̂mCm. (27)

Note that the probability that a tie occurs is zero.
Next, we analyze the average total variation between

t = n/Ka and T̂ = N̂/Ka where the average is with respect
to the noise vector Z in (1), and the random codebook.

3) Error Analysis: Similar to [5], we replace the joint
probability distribution over which E[TV

(
t, T̂

)
] is computed

with the distribution for which Xk
D
= CWk

. This can be done
at the expense of adding an additional total variation term (the
p0 term in (7)). Next, we evaluate E[TV

(
t, T̂

)
] conditioned

on the high probability event A =
{
∥Z∥2 ≤ N+Nδ

}
, where

δ is chosen as in (9). This yields an additional penalty of
p1 defined in (8), which is obtained by using the concen-
tration bound for the sum of chi-squared random variables
given in [10, Eq. (2.19)]. From Lemma 1, we can express
E
[
TV

(
t, T̂

)
1 {Z ∈ A}

]
as

E
[
TV

(
t, T̂

)
1 {Z ∈ A}

]
=

Ka∑
t=1

t

Ka
pt (28)

where pt = P[∥n− N̂∥1 = 2t,Z ∈ A]. Next, we will upper-
bound pt.

Without loss of generality, we assume Ma = [Ma]. We
define the set of all decoded message multiplicity vectors at
an ℓ1 distance of 2t from n as

Π̂t(n) = {n̂ : ∥n− n̂∥1 = 2t} . (29)

Set C(n) =
∑

m∈Supp(n) nmCm , c(n̂) = ∥n− n̂∥2, and

E(n̂) =
{
∥Z +

√
P′c(n̂)X ′∥ < ∥Z∥

}
. (30)

We observe that

pt = P

 ⋃
n̂∈Π̂t(n)

{Decoded vector is n̂} ∩ {Z ∈ A}

 (31)

= P

 ⋃
n̂∈Π̂t(n)

{∥Y −C(n̂)∥ < ∥Y −C(n)∥} ∩ {Z ∈ A}


(32)

= P

 ⋃
n̂∈Π̂t(n)

{∥Z +C(n)−C(n̂)∥ < ∥Z∥} ∩ {Z ∈ A}

(33)

= P

 ⋃
n̂∈Π̂t(n)

{
∥Z +

√
P′∥n− n̂∥2X ′∥ < ∥Z∥

}
∩ {Z ∈ A}


(34)

= P

 ⋃
n̂∈Π̂t(n)

{
∥Z +

√
P′c(n̂)X ′∥ < ∥Z∥

}
∩ {Z ∈ A}

 (35)

= P

 ⋃
n̂∈Π̂t(n)

E(n̂) ∩ {Z ∈ A}

 . (36)

where (33) follows from the fact that Y = C(n)+Z, and (34)
follows by noting that C(n)−C(n̂) ⊥⊥ Z,

C(n)−C(n̂)
D
=

√
P′∥n− n̂∥2X ′ (37)



where X ′ ∼ N (0, IIIN), and X ′ ⊥⊥ Z. Now, fixing z ∈ A,
we analyze the conditional event P[E(n̂)|Z = z]. By invoking
Chernoff’s bound

P
[
E(n̂)

∣∣∣Z = z
]
≤ E [exp (E1 (X

′, c(n̂), z))] (38)

where

E1 (X
′, c(n̂), z) = λ∥z∥2 − λ∥z +

√
P′c(n̂)X ′∥2. (39)

We choose λ = λ∗, where λ∗ is defined in (21). (We make
this choice of λ so that the function E′

0 defined in (23), and
which comes up in our final expression in (6), is maximized.)

Next, utilizing the identity

E
[
e−θ∥

√
αZ+v∥2

]
=

exp
(
− θ∥v∥2

1+2αθ

)
(1 + 2αθ)

N
2

(40)

which holds for α > 0, v ∈ RN, and 2αθ > −1, we obtain

P
[
E(n̂)

∣∣∣Z = z
]
≤ exp(f(c(n̂))) (41)

where f(·) is defined in (25). Note that the condition
2αθ > −1 is ensured in our setup, since λ∗ > 0, and
c(n̂) > 0. Now, invoking Lemma 4, we conclude that
c(n̂) ≥ cmin. Furthermore, since z ∈ A, it follows from
Lemma 3 that f(c(n̂)) ≤ f(cmin). That is, for z ∈ A, we
have

P
[
E(n̂)

∣∣∣Z = z
]
≤ eλ

∗f(cmin). (42)

Now, we proceed by applying Gallager’s ρ-trick. We fix
ℓ, S, i, N , Ŝ, N̂ , and j as in the statement of Lemma 4.
For convenience, we set η = (t, ℓ,S, i,N , j), and denote by∑

η and
⋃

η the multiple summations and unions over the
indices, respectively. Let c1(n̂) = ∥nS∥1 + ∥nN ∥1 − ∥n̂N ∥1,
c2(n̂) = ∥n̂N̂ ∥1 − ∥nN̂ ∥1 + j, and

Π̂′(n) =
{
n̂ : c1(n̂) + c2(n̂) = 2t

}
(43)

and note that
⋃

n̂∈Π̂t(n) E(n̂) =
⋃

η

⋃
n̂∈Π̂′(n) E(n̂). Fix

p(z, n̂,A) = 1 {z ∈ A}P[E(n̂)|z]. Then, Gallager’s ρ-trick
applied to (36) yields

P

 ⋃
n̂∈Πt(n)

E(n̂) ∩ A
∣∣∣z
 ≤

∑
η

P

 ⋃
n̂∈Π̂′(n)

E(n̂) ∩ A
∣∣∣z
(44)

≤
∑
η

 ∑
n̂∈Π̂′(n)

P
[
E(n̂) ∩ A

∣∣∣z]
ρ

(45)

=
∑
η

 ∑
n̂∈Π̂′(n)

p(z, n̂,A)

ρ

(46)

≤
∑
η

 ∑
n̂∈Π̂′(n)

ef(cmin)

ρ

(47)

≤
∑
η

|Π̂′(n)|ρeρf(cmin). (48)

Here, (48) follows because upon fixing η, the parameter cmin

is the same for all n̂ ∈ Π̂′(n). This, in turn, follows from
the definition of cmin in (22), and the observation that, since
∥n∥1 = ∥n̂∥1, we have c1(n̂) = c2(n̂) = t. Using the
definition of f(·) in (25), we have

P
[ ⋃
n̂∈Π̂′(n)

E(n̂) ∩ A
∣∣∣Z = z

]
≤ |Π̂′(n)|ρeρb∥z∥

2−Nρa

(49)

where a and b are defined as in (19) and (20), respectively.
Now, we take the expectation over Z. We observe that, with

our choice of λ∗, we have that 1− 2bρ > 0. Then, using (40),
we conclude that

P
[ ⋃
n̂∈Π̂′(n)

E(n̂)
]
≤ |Π̂′(n)|ρe−

Nρ
2 log(1−2bρ)−Nρa. (50)

From Lemma 4, it follows that |Π̂′n)| ≤ M′, where M′

is given in (16). Using the definition of p̃t, R, and E0

in (11)–(15), we conclude that pt ≤ p̃t.

IV. NUMERICAL RESULTS

In this section, we compute the bound in (6) numerically and
compare it with the performance of a TUMA-adapted version
of the CCS-AMP algorithm, originally proposed in [8] for the
UMA scenario.

The original CCS-AMP scheme comprises of a divide-and-
conquer strategy in which messages are split into smaller
blocks, and the use of inner and outer encoders and de-
coders [11]. In particular, the inner decoder reconstructs the
transmitted signals, and the outer decoder maps these recon-
structions to valid codewords. To extend CCS-AMP to TUMA,
we modify the inner decoder to handle message collisions
by incorporating a carefully chosen prior and a Bayesian
estimation of multiplicities. In the outer decoder, we apply a
majority-vote approach to estimate the message multiplicities.
With these adaptations, we are able to use CCS-AMP to
estimate multiplicities in TUMA.

In the numerical evaluation, we set the codeword length
to n = 38 400, the number of message bits to k = 128.
To use Theorem 1 we need to specify the message type.
We choose it as follows. We select message types that ap-
proximate a Zipf PMF pZ(m; NZ , s) = m−s/

∑NZ

j=1 j
−s for

m = 1, . . . ,NZ . To determine the transmitted message type,
we use pZ(m;Ma, 1). Specifically, we fix a K′

a and calculate
each nm by rounding K′

apZ(m;Ma, 1) so that the total number
of users Ka =

∑
m nm is approximately K′

a. The resulting
transmitted type is tZ = n/Ka. For reference, the UMA mul-
tiplicity vector is tU = [1/K′

a, . . . , 1/K
′
a]. When evaluating

the bound, we fix δ = 1/(1− 2δ∗min)−1.01, and we optimize
over ρ, with ρmin = 0.01.

We evaluate the minimum energy per bit
Eb/N0 = 10 log10(NP/2k) (dB) required to achieve a
total variation distance of ϵ = 0.05. In Fig. 1, we depict
the value of Eb/N0 (dB) versus the total variation distance
between the UMA profile and the chosen TUMA profiles,



for K′
a = 100 and Ma varying from 2 to 100. The point

Ma = 100, which corresponds to the UMA setting, is
obtained by using [5, Theorem 1]. In our implementation
of the CCS-AMP scheme for TUMA, we average the total
variation distance over 1000 simulations, and we choose the
number of potential candidates chosen per sub-blocks to
be 300.

The trend in Eb/N0—which increases, peaks, and then
decreases—can be explained as follows. Assume that the
decoder has an estimate of the support of the transmitted
messages. Then, it has to consider

(
Ka−1
Ma−1

)
possible multi-

plicity vectors over that support. This number grows, peaks,
and then declines as Ma decreases from Ka

′ to 1, dictating
the complexity in the decoding process. This complexity
mirrors the observed trend in Eb/N0. Furthermore, as we
deviate from the UMA profile by decreasing Ma, the power
gain per transmitted message increases, eventually peaking at
Ma = 1, where it becomes proportional to (K′

a)
2. This power

gain accounts for the eventual substantial improvement1 in
performance, compared to the UMA case when Ma decreases.
We also observe that the the Eb/N0 required by CCS-AMP
is about 3dB above the limit predicted by the bound.
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Fig. 1. The required Eb/N0 (dB) for message types with (Ma,Ka) in
{(100, 100), (80, 92), (60, 98), (50, 102), (30, 102), (10, 100)}.

V. CONCLUSION

We derived a numerically computable achievability bound
on the error incurred in estimating the type of messages
over an unsourced GMAC. By evaluating this bound, we
obtained insights into the minimum energy per bit required
to transmit a given message type under a total variation
constraint. Extending this work to a scenario with unknown
user and message counts, as well as to fading models, are
possible directions for future works.

APPENDIX A
PROOF OF LEMMA 1

Since TV
(
t, T̂

)
∈ [0, 1], ∥n− n̂∥1 ∈ [0, 2Ka]. We have,

∥n− n̂∥1 =
∑

m:nm≥n̂m

(nm − n̂m) +
∑

m:n̂m>nm

(n̂m − nm).

1Note that when the total variation between the UMA and TUMA profiles
is 0.98, the required Eb/N0 (not shown in the figure) is −27.32 dB for the
bound, and −22.46 for CCS-AMP.

(51)

Since ∥n∥1 = ∥n̂∥1, we have∑
m:nm≥n̂m

nm +
∑

m:n̂m>nm

nm =
∑

m:nm≥n̂m

n̂m +
∑

m:n̂m>nm

n̂m.

(52)

Rearranging the terms in the above equation, we observe∑
m:nm≥n̂m

(nm − n̂m) =
∑

m:n̂m>nm

(n̂m − nm).

(53)

Thus, we observe that ∥n− n̂∥1 is even.
Now, we look at the range of values ∥n− n̂∥1 can assume.

The upper bound on ∥n − n̂∥1 is achieved by any pair of n
and n̂ such that Supp(n) ∩ Supp(n̂) = ∅, as∑

m:nm≥n̂m

(nm − n̂m) =
∑

m:n̂m>nm

(n̂m − nm) = Ka.

(54)

Next, since we assume n ̸= n̂, ∥n−n̂∥1 > 0. Since ∥n−n̂∥1
is even, we have ∥n− n̂∥1 ≥ 2. The following choices of n
and n̂ achieves this lower bound. First, fix any n that satisfy
the hypothesis of this lemma. Let mmax denote its index with
the maximum multiplicity and mmin the index with minimum
multiplicity. Choose an n̂ such that Supp(n) = Supp(n̂),
n̂mmax

= nmmax
−1, n̂mmin

= nmmin
+1, and n̂m = nm, for all

other values of m ∈ [M]. For such a choice, ∥n − n̂∥1 = 2.
Thus, we have shown that, for any n and n̂ satisfying the
conditions of the lemma, ∥n − n̂∥1 is even and belongs to
[2 : 2Ka]. Alternatively, ∥n− n̂∥1 = 2t, for some t ∈ [Ka].

APPENDIX B
PROOF OF LEMMA 2

Let

a′ =
1

2
log(1 + 2cP′λ) (55)

b′ = λ
(
1− 1

1 + 2cP′λ

)
(56)

so that

E′
0(λ) = ρa′ +

1

2
log(1− 2b′ρ). (57)

To find the λ that maximizes E′
0, we analyze the equation

dE′
0

dλ = 0 and find the stationary point of the function E′
0.

That is, we analyze

ρ
da′

dλ
=

ρ

1− 2b′ρ

db′

dλ
. (58)

We have
da′

dλ
=

cP′

1 + 2cP′λ
(59)

and
db′

dλ
=

4c2P′2λ2 + 4cP′λ

(1 + 2cP′λ)2
. (60)



We also have

1− 2b′ρ =
1 + 2cP′λ− 4cP′λ2ρ

1 + 2cP′λ
. (61)

Substituting (59), (60), and (61) in (58), we obtain that the
stationary point satisfies

cP′ + 2c2P′2λ− 4c2P′2λ2ρ = 4c2P′2λ2 + 4cP′λ. (62)

Equivalently,

4cP′(1 + ρ)λ2 + 2(2− cP′)λ− 1 = 0. (63)

Solving the quadratic equation, we obtain (21). From the
expression, using the fact that ρ ∈ (0, 1], we can easily observe
that

λ∗ ≤ 1

2(1 + ρ)
<

1

2
. (64)

The claim that λ∗ maximizes E′
0(λ) follows by observing that

E′
0(λ) is twice differentiable for λ > 0, and verifying that

dE′
0(λ)
dλ evaluated at λ = λ∗ is negative.

APPENDIX C
PROOF OF LEMMA 3

We observe that the first derivative of f(c) with respect to
c is

f ′(c) =
λ∗P′

(1 + 2cP′λ∗)

( 2λ∗∥z∥2

1 + 2cP′λ∗
−N

)
. (65)

Further, f ′(c) = 0 is attained at

c∗ =
∥z∥2

NP′ − 1

2P′λ∗
. (66)

For any z ≤ N(1 + δ), i.e., z ∈ A, we observe that

c∗ ≤ 1 + δ

P′ − 1

2P′λ∗
. (67)

From Lemma 2, our choice of λ∗ satisfies λ∗ = 1/2− δ∗, for
some specific δ∗ ∈ (0, 1/2). Further, the δ∗ so obtained is a
function of cmin, which in turn depends on the parameters t,
S, N , ℓ, i, and j. We choose δ∗min as the minimum among all
such δ∗ values. We have δ∗min ∈ (0, 1/2) (as we are taking the
minimum over a finite set of values). We choose δ such that

δ <
1

1− 2δ∗min

− 1. (68)

This will ensure
1 + δ

P′ − 1

2P′λ∗
< 0. (69)

Using δ as in (69), with z ∈ A, and invoking (68), we obtain

c∗ ≤ 0. (70)

It can be easily verified that, for z ∈ A,

c > c∗ ⇒ 2λ∗∥z∥2

1 + 2cP′λ∗
< N. (71)

Thus, from the expression for f ′(c) in (65), it follows that,

c > c∗ ⇒ f ′(c) < 0. (72)

Since c∗ ≤ 0 for z ∈ A, f(c) is strictly decreasing in c, for
c > 0.

APPENDIX D
PROOF OF LEMMA 4

To establish the bound stated in the first claim of the lemma,
we need to enumerate all possible solutions n̂ of the nonlinear
equation ∥n− n̂∥1 = 2t. We accomplish this by first showing
that ∥n − n̂∥1 can be expressed as the sum of two terms
which are linear in n̂, for any n̂ stated in the lemma. Then,
we obtain the bound by leveraging the resulting linear structure
and using the expressions for the total number of positive and
non-negative integer-valued solutions of an equation of the
form x1 + . . .+ xk = n, for k, n ∈ N such that k ≤ n.

Fix S, N , N̂ , and Ŝ as in the statement of the lemma and
denote Ma = Supp(n), and M̂a = Supp(n̂). Observe that

∥n− n̂∥1 =

M∑
m=1

|nm − n̂m| (73)

=
∑

m∈Ma

|nm − n̂m|+
∑

m∈Mc
a

|nm − n̂m| (74)

=
∑
m∈S

|nm − n̂m|+
∑

m∈Ma∩M̂a

|nm − n̂m|

+
∑
m∈Ŝ

|nm − n̂m|+
∑

m∈Mc
a∩M̂c

a

|nm − n̂m| (75)

=
∑
m∈S

nm +
∑

m∈Ma∩M̂a

|nm − n̂m|+
∑
m∈Ŝ

n̂m + 0

(76)

= ∥nS∥1 +
∑

m∈Ma∩M̂a

|nm − n̂m|+ j (77)

= ∥nS∥1 +
∑

m∈Ma∩M̂a∩N

|nm − n̂m|+

+
∑

m∈Ma∩M̂a∩N c

|nm − n̂m|+ j (78)

= ∥nS∥1 +
∑
m∈N

(nm − n̂m) +
∑
m∈N̂

(nm − n̂m) + j

= ∥nS∥1 + ∥nN ∥1 − ∥n̂N ∥1
+∥n̂N̂ ∥1 − ∥n̂N ∥1 + j. (79)

Next, for ∥n− n̂∥1 = 2t, we observe that

∥nS∥1 + ∥nN ∥1 − ∥n̂N ∥1 = t (80)
∥n̂N̂ ∥1 − ∥n̂N ∥1 + j = t. (81)

Here, (80) is linear in n̂N and (81) is linear
in n̂N̂ , the equations follow by noting that
∥n∥1 = ∥n̂∥1, and ∥n̂Ŝ∥1 = j. In (80), S corresponds
to the set of messages miss-detected at the receiver.
Furthermore, N represents the set of detected-but-deflated
messages, as the estimated multiplicities corresponding to the
messages in N are deflated with respect to the transmitted
multiplicities over N . Likewise, in (81), N̂ denotes the
set of detected-but-inflated messages by the decoder, as the
estimated multiplicities of messages in N̂ are strictly inflated
compared to the corresponding transmitted multiplicities.



Finally, Ŝ denotes the set of impostor messages, i.e., messages
not transmitted but detected at the receiver.

Next, fix Ma ⊂ [Ma] such that |Ma| = Ma.
Furthermore, fix t, ℓ, i as in the statement of the
lemma, any subsets S, N , and N̂ of Ma such
that Ma = S ∪ Ŝ ∪ N̂ , and any Ŝ ⊂ Mc

a ∩ [M]
such that |Ŝ| = ℓ, and ∥nS∥1 ≥ t. Then, any
solution n̂∗

N to (80), n̂∗
N̂

(81), and n̂∗
Ŝ

to ∥n̂Ŝ∥1 = j define
a solution n̂∗

N∪N̂∪Ŝ
to ∥n− n̂∥1 = 2t. Accordingly,

fixing t, ℓ, i, and j as mentioned, S ⊆ Ma such
that |S| = ℓ, ∥nS∥1 ≥ t N ⊆ Ma ∩ Sc such that
|N | = i, and N̂ = Ma \ (S ∪ N ),⋃
Ŝ

⋃
n̂∗

Ŝ

⋃
n̂∗

N

⋃
n̂∗

N̂

{
n̂∗

N∪N̂∪Ŝ : ∥n̂Ŝ∥1 = j, (80), and (81) holds
}

(82)

where Ŝ is such that |Ŝ| = ℓ, contains the set of all
solutions to ∥n− n̂∥1 = 2t. In addition, if N forms a de-
flated set for any n̂ of this set (with respect of n), i.e., if
N = {m : nm ≥ n̂m}, (82) represents the set of all solutions
to ∥n− n̂∥1 = 2t.

We observe that there are
(
M−Ma

ℓ

)
ways of choosing an

impostor set Ŝ of length ℓ in (82), and that(
M−Ma

ℓ

)
≤ Mℓ

ℓ!
. (83)

For any such Ŝ, there are (
j − 1

ℓ− 1

)
(84)

number of solutions to ∥n̂Ŝ∥1 = j in N.
Next, note that there are M+ solutions of n̂ to (80) in

N, where M+ is defined in (18). In addition, there are M+
0

solutions of n−n̂ to ∥n−n̂∥1 = t−∥nS∥1 in N0, where M+
0

is defined in (17). Hence, there are at most min
{
M+

0 ,M0

}
valid options for the deflated multiplicities in any solution n̂
to ∥n− n̂∥1 = 2t.

Finally, there are (
t− j − 1

Ma − ℓ− i− 1

)
(85)

solutions of n̂ to (81) in N. Combining (83)–(85), we obtain
M′ in (16) as the number of solutions of n̂ to ∥n− n̂∥1 = 2t.

Next, to prove the second part of the lemma, we utilize the
inequality

∥x∥1 ≤
√
n∥x∥2, x ∈ Rn. (86)

We obtain ∥n − n̂∥2 ≥ cmin, where cmin is as in (22),
by applying the above inequality to nS , ∥nN ∥1 − ∥n̂N ∥1,
∥n̂N̂ ∥1 − ∥nN̂ ∥1, and n̂Ŝ , separately.
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