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Wireless-communication-enabled massive connectivity

source: loTpool

Challenge
/& Collect in an energy efficient way data from a massive number of low-cost sensors J
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Massive wireless connectivity

Massive machine-type communication (mMTC)

Mostly uplink

Small information payload (100 bits) \ /

. . 7 o 2
High user density (10° devices per Km*) e

° i;?:zi:i)c transmission (less than once per é/f@ [j
=
Challenging problem

Around 120 complex degrees of freedom per user
for a 20 MHz system

\.

.

Key design question

How to transmit around 100 bits in around 100 d.o.f. per user over a MAC, under stringent
energy-efficiency requirements
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Traditional multiple access models and their limitations [Gallager '85]

Multiaccess IT [Cover '75, Wyner '74]
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%mg(uﬂ)
X All users active (no sporadicity)
® Each user is given a different codebook

X Not feasible for mMMTC (overhead too large)
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Collision resolution [Abramson '70, Roberts '72,
Liva '11]

Vv Infinitely many, sporadically active users
X Crude modeling of communication aspects

® De-facto standard for mMTC
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Traditional multiple access models and their limitations [Gallager '85]

Multiaccess IT [Cover '75, Wyner '74]
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X All users active (no sporadicity)
® Each user is given a different codebook

X Not feasible for mMMTC (overhead too large)

Addressing these limitations

Collision resolution [Abramson '70, Roberts '72,
Liva '11]

v Infinitely many, sporadically active users
X Crude modeling of communication aspects

® De-facto standard for mMTC

® Noiseless adder channel (e.g., [Bar-David et al., '97])

® More general information-theoretic perspective [Polyanskiy '17]
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Unsourced Gaussian MAC model [Polyanskiy '17]

z ~ N (0,nI)
@ o Decoder g }» list W
y=> flw)+z
k=1

o flw)eR™, |f(w)|*<nP, w=1,....M
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Unsourced Gaussian MAC model [Polyanskiy '17]

@ Decoder g }» list W

o flw)eR™, |f(w)|*<nP, w=1,....M

I Same encoder f(-) (and same codebook) for all users

TUMA | Giuseppe Durisi

4/22



TUMA

Unsourced Gaussian MAC model [Polyanskiy '17]

z ~ N (0,nI)
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Unsourced Gaussian MAC model [Polyanskiy '17]

z ~ N (0,nI)
@ Decoder g }» list W

fw) eR™, |If)|* <nP, w=1,....,M
Same encoder f(-) (and same codebook) for all users
Decoder produces an unordered list W = g(y) of K, messages (K. known to decoder)

Per-device error-probability: = I%ﬁ Ko P [wk ¢ 1//\7]
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Unsourced Gaussian MAC model [Polyanskiy '17]

z ~ N (0,nI)
@ Decoder g }» list W

fw) eR™, |If)|* <nP, w=1,....,M

Same encoder f(-) (and same codebook) for all users

Decoder produces an unordered list W = g(y) of K, messages (K. known to decoder)

Per-device error-probability: = I%ﬁ Ko P [wk ¢ 1//\7]

[Polyanskiy "17]: achievability bound on Ei, /Ny = 10251\4 required to achieve P, < ¢
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Random coding achievability bound for UMA

Random-coding achievability bound (K. known) [Polyanskiy '17]

For every P’ < P, there exists an (M, n, €) code for the K,-user unsourced GMAC with power

constraint P satisfying
Ka

k.
€< Z K. min{pk, qx } +po, where

k=12

('5)

1<~ , P
Po = M +KaP|:TLJZ;Z]>P

—B(t)

ar = inf P[I, < 4] + e"FFitR2)=y
v

I : related to inf. dens.

= 1 1
Pr=c Ri=—logM — — logk!
E()= max_ —pip2kRi — p2R2 + Eo(p1, p2) n nk

0<p1,p2<1

1 K,
Eo(p1, p2) : complicated expression in p1, pa, k, P’ Ry = - log ( ka>
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Key ideas in the proof

® Gaussian codebook
® Message collisions or power-constraint violations treated as error

e Decoder: unordered list W of decoded messages obtained by solving

—

W = arg min ly —cOV)|, with cW')= Z G
W/CL:M], W/ |=Ka wew:

® Space of error events parameterized by number of misdetected /false-positive messages

mis-
detected:
Wha

positive:

Distinct
transmitted
messages W

® Error exponent analysis
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Numerical evaluation of the bound
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Numerical evaluation of the bound
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Novel coding schemes (2017-2022)
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Fengler et al. (2021)
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The coded compressive sensing approach

Message detection is a compressive sensing problem

M

n . .
_ v/ We could use compressive sensing solvers such as
AMP. ..

%X ...but the width of the matrix is huge (M = 2'°%)!

I, non-zero entries—

Solution

@ Fragment message into smaller sub-blocks (e.g., 16 bits each), transmit one sub-block at a time,
and use AMP to decode

@ Add outer tree code to stitch together sub- blocks )
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From UMA to TUMA

@% é@ﬁ é\/é &
@ @S = lﬁ /o‘/—/[é
@ﬁ@mﬁ ﬁ%

Sampling and quantization

Data transmission

® Users may transmit the same quantized information
® |nterested in both the set if transmitted messages and their multiplicities

® Goal: estimate empirical message distribution (type)
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Two examples

Multi-target position tracking Over-the-air aggregation in federated learning

lobal Model

(] L] L] ()
w5 ~
R
o 3¢ =) <
. L4 L4 L4 X sensor
| source: Qiao, Gao, Li, and Giindiiz (2023)
X e target .
Message multiplicity: 10th-90th percentile box with full range whiskers
L] L] L] L] . a0l T T T
e quantiz. £
L. = 20
position ﬁE 10 .
o 4 9
b
[} o L] g 2 o
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Type-based estimation over multiple access channel

11, —

transmitted type decoded type

B Considered by [Mergen & Tong, 2006], however. . .
® Assumed that each message can be associated to an orthogonal codeword

® Multiuser interference over a Gaussian MAC can be eliminated via matched filtering
& Our scenario—type-based unsourced multiple access (TUMA)

® Number of possible messages (2'°) >> frame length (30000): orthogonalization not possible

® Only few messages are active (still a compressive sensing problem)
<
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TUMA over a Gaussian MAC

,,,,,,,,,,, User o ____,
| o flwi)
i | z ~ N(0,nI)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ) ,
m - @—' estimated type t
B y=)> flwy)+z
! wie, 3 k=1
Key differences with respect to UMA
® Messages w1, ..., Wk, forming type t = [t1,...,tnm| where t,, = Kia ZkK;‘l 1{wr = m}

® Decoder returns a type estimate &
® (Communication) performance metric: total variation distance

1 M
TV(t,8) = 5 Y [tm = im
m=1
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Random coding achievability bound for TUMA [Krishnan et al. 2025]

Random-coding achievability bound (K, and M, known)
For every P’ < P, there exists an (M, n,e) TUMA code satisfying

Ka

k
e < Z Epk +po+p1, where
k=1
1<~ 5 P
po = M. P [n % > pr 0 = complicated expression
j=1

N62/8 pr = even more complicated expession. ..
pL=€"
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Example: UMA vs TUMA and CCS performance

o
=
= |
=
S§]
CCS-AMP
—6 |- N
bound
_sl .
0 0‘.2 0."1 016 0‘.8 1

total variation distance between the UMA and TUMA profiles

n = 38400, ¢ = 0.05, K, = 100, M, € [2,100]
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Application example: multi-target position tracking over AWGN channel

R |.L_.Ll wnr

ground truth: q  quantized type: t  decoded type: t

e target
() L] L] L] . ~ . .
e quantiz. ® TV(t,t) captures only communication
= A position performance

® Qverall performance: Wasserstein distance
Wa(q, t)

TUMA | Giuseppe Durisi 16 /22



Tradeoff between communication and quantization [Ngo et al., 2024]

TUMA

Giuseppe Durisi
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T
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perfect |
communication

|
I I
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number of bits, logy M

K, = 100 sensors, M, = 10 targets; AMP detection algorithm
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Beyond Gaussian MAC: TUMA over fading channels

So far Gaussian MAC. ..

&, Perfect power control: y = S5 f(wy) + z
@ Multiplicity can be estimated from power of received codeword

X Over a fading channel, this would require channel inversion [Qiao et al., 2024]
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Beyond Gaussian MAC: TUMA over fading channels
So far Gaussian MAC. ..

&, Perfect power control: y = S5 f(wy) + z
@ Multiplicity can be estimated from power of received codeword

X Over a fading channel, this would require channel inversion [Qiao et al., 2024]

The benefits of cell-free architectures in UMA

® [Gkiouzepi et al., 2024]: UMA within cell-free massive MIMO architectures
P Message recovery + channel estimation -+ estimation of position
@ Perfect knowledge of large-scale fading coefficients
@ Location-based codeword partition
® Multi-source AMP
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Beyond Gaussian MAC: TUMA over fading channels
So far Gaussian MAC. ..

&, Perfect power control: y = S5 f(wy) + z
@ Multiplicity can be estimated from power of received codeword

X Over a fading channel, this would require channel inversion [Qiao et al., 2024]

The benefits of cell-free architectures in UMA

® [Gkiouzepi et al., 2024]: UMA within cell-free massive MIMO architectures
P Message recovery + channel estimation -+ estimation of position
@ Perfect knowledge of large-scale fading coefficients
@ Location-based codeword partition
® Multi-source AMP

The same ingredients can be used to perform TUMA over a cell-free massive
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TUMA over a cell-free massive MIMO architecture
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Activity detection
v/ Perfect knowledge of large scale fading
coefficients (LSFC) of each user
+ Each user has its own signature
v/ Association between users and LSFC
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UMA

v/ Each user transmits a random message

X No association between message and LSFC

+/ Solution: location-based codeword
partitioning
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TUMA over a cell-free massive MIMO architecture
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Activity detection
v/ Perfect knowledge of large scale fading
coefficients (LSFC) of each user
+ Each user has its own signature
v/ Association between users and LSFC

UMA
v/ Each user transmits a random message
X No association between message and LSFC
+/ Solution: location-based codeword

partitioning
v
TUMA
v Possible to estimate multiplicities
v
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TUMA over a cell-free massive MIMO architecture [Okumus et al., 2025]

access point

Multi-target tracking example
active sensor
inactive sensor ® 40 access points with 4 antennas each

detected target

e o X X [0

® 100 sensors, 50 targets
undetected target

® Sensing phase followed by communication
phase: n = ns + ne. = 2500
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TUMA over a cell-free massive MIMO architecture [Okumus et al., 2025]

100 sensors, 50 targets, n = ng + ne = 2500, multi-source AMP detection algorithm

0.03 1
N
E
§ > 0.8
go.02| 2
o 206

o
§ s
% S
@ © 0.4
%] =9 9
§ 0.011- Ne 000 | %
o 3
» e E 02| R
¢ perfect
® communication
0 | | | 0 | | | |
4 6 8 10 12 0 500 1000 1500 2000 2500
number of bits, logy M sensing blocklength, ng
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Conclusion

Type-based unsourced multiple access (TUMA)

A framework to collect in an efficient way data from a massive population of sporadically active sensorsJ

Theoretical bounds and practical algorithms

Applications
0 0 0

N [0 access point
X active sensor
X inactive sensor
| e detected target
CCS-AMP ® undetected target
6l |
bound
sl |
| | | |
0 0.2 0.4 0.6 0.8 1

total variation distance between the UMA and TUMA profiles
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