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I. PROOF FOR SADDLEPOINT APPROXIMATION ON RCUS
BOUND

The proof of the saddlepoint approximation that we will
show next follows the steps in [1, App. I.A] and [2, App. E],
which in turn are mostly based on [3, Ch. XVI.4, Th.1].

A. Preliminaries

Let {Zℓ}nℓ=1 be a sequence of i.i.d., real-valued, zero-mean
random variables. The MGF of Zℓ is defined as

m(ζ) = E
[
eζZℓ

]
(1)

and the CGF is defined as

γ(ζ) = logm(ζ). (2)

We assume that Zℓ is nonlattice. Indeed, in our setup, Zℓ is
a continuous random variable. For lattice distributions, see [3,
Ch. XVI.4, Th.2]. We further assume

sup
ζ<ζ<ζ

∣∣∣∣ d3dζ3m(ζ)

∣∣∣∣ <∞. (3)

We next show the saddlepoint approximation for a simpler
case than the one given by the RCUs bound, whose tail
probability also presents a uniform random variable U in [0, 1]
in the expression. In particular we will show that

P

[
n∑

ℓ=1

Zℓ > R

]
= en(γ(ζ)−ζγ′(ζ))

[
Φn,ζ(ζ)

+
K(ζ, ζ, n)√

n
+ o

(
1√
n

)]
(4)

and

P

[
n∑

ℓ=1

Zℓ < R

]
= 1− en[γ(ζ)−ζγ′(ζ)]

[
Φn,ζ(−ζ)

−K(−ζ, ζ, n)√
n

+ o

(
1√
n

)]
(5)

where

K(u, ζ, n) =
γ′′′(ζ)

6γ′′(ζ)3/2

(
− 1√

2π
+
u2nγ′′(ζ)√

2π

−u3(γ′′(ζ)n)3/2Φn,ζ(u)

)
(6)

and
Φb,ζ(u) = eb

u2

2 γ′′(ζ)Q
(
u
√
bγ′′(ζ)

)
. (7)

We start with P[
∑n

ℓ=1 Zℓ > R] for R > 0. Let Yℓ = Zℓ − R̃,
where R̃ = R/n and let F denote the distribution of Yℓ. Then,
the CGF of Yℓ is given by γ̃(ζ) = γ(ζ) − ζR̃. Let the tilted
random variable Vℓ have distribution

vζ(x) = e−γ̃(ζ)

∫ x

−∞
eζtdF (t) (8)

= e−γ(ζ)+ζR̃

∫ x

−∞
eζtdF (t). (9)

Let ψζ(τ) denote the MGF of the tilted random variable Vℓ,
which is given by

ψζ(τ) =

∫ ∞

∞
eτxdvζ(x)

=

∫ ∞

−∞
eτx−γ(ζ)+ζR̃+ζxdF (x)

= e−γ(ζ)+ζR̃

∫ ∞

−∞
e(τ+ζ)xdF (x)

= e−γ(ζ)+ζR̃ E
[
eτ+ζ(Zℓ−R̃)

]
= e−γ(ζ) E

[
e(τ+ζ)Zℓ

]
e−τR̃

=
m(τ + ζ)

m(ζ)
e−τR̃. (10)

Since E[Vℓ] = ψ′
ζ(0), where the derivative is taken with

respect to τ , it follows that

E[Vℓ] = ψ′
ζ(0)

=

(
m′(τ + ζ)

m(ζ)
e−τR̃ − R̃

m(τ + ζ)

m(ζ)
e−τR̃

) ∣∣∣∣
τ=0

=
m′(ζ)

m(ζ)
− R̃

= γ′(ζ)− R̃. (11)

Similarly, Var[Vℓ] = E
[
V 2
ℓ

]
− E[Vℓ]2 = γ′′(ζ).

We denote by F ∗n the distribution of
∑n

ℓ=1 Yℓ and by v∗nζ
the distribution of

∑n
ℓ=1 Vℓ. Proceeding as in (8), we obtain

v∗nζ (x) = e−nγ̃(ζ)

∫ x

−∞
eζtdF ∗n(t)

= e−nγ(ζ)+ζR̃

∫ x

−∞
eζtdF ∗n(t). (12)

We next require an expression for 1 − F ∗n as a function of
v∗nζ (x), which can be obtained by inverting (12) and noting
that P[

∑n
ℓ=1 Zℓ ≥ R] = 1− F ∗n(R). Thus,

P

[
n∑

ℓ=1

Zℓ ≥ R

]
= enγ(ζ)−ζR

∫ ∞

0

e−ζydv∗nζ (y). (13)

We next choose ζ such that nγ′(ζ) = R, which ensures
that the distribution v∗nζ has zero mean. We then replace the
distribution v∗nζ by the zero-mean normal distribution with
variance nγ′′(ζ), denoted by Nn,γ′′(ζ), and analyze the error



2

incurred by this substitution. Let first

Aζ = enγ(ζ)−ζR

∫ ∞

0

e−ζydNn,γ′′(ζ)(y)

=
en[γ(ζ)−ζγ′(ζ)]√

2πnγ′′(ζ)

∫ ∞

0

e−ζye
− y2

2nγ′′(ζ) dy

=
en[γ(ζ)−ζγ′(ζ)]

√
2π

∫ ∞

0

e−ζt
√

nγ′′(ζ)e−
t2

2 dt

=
en[γ(ζ)−ζγ′(ζ)+ ζ2

2 γ′′(ζ)]

√
2π

∫ ∞

ζ

e
− 1

2

(
t+ζ

√
nγ′′(ζ)

)2

dt

=
en[γ(ζ)−ζγ′(ζ)+ ζ2

2 γ′′(ζ)]

√
2π

∫ ∞

ζ
√

nγ′′(ζ)

e−
x2

2 dx

= en[γ(ζ)−ζγ′(ζ)+ ζ2

2 γ′′(ζ)]Q(ζ
√
nγ′′(ζ))

= en[γ(ζ)−ζγ′(ζ)]Φn,ζ(ζ) (14)

where the third equality follows by the change of variable
t = y/

√
nγ′′(ζ), and the fifth equality follows by the change

of variable x = t+ ζ
√
nγ′′(ζ).

We are now ready to asses the error incurred by replacing
v∗nζ with Nn,γ′′(ζ) in (13), which is given by

enγ(ζ)−ζR

∫ ∞

0

e−ζydv∗nζ (y)−Aζ

= en[γ(ζ)−ζγ(ζ)]

[
−
(
v∗nζ (0)−Nn,γ′′(ζ)

)
+ζ

∫ ∞

0

(
v∗nζ (y)−Nn,γ′′(ζ)(y)

)
e−ζydy

]
= en[γ(ζ)−ζγ′(ζ)]

[
γ′′′(ζ)

6γ′′(ζ)3/2
√
n

(
− 1√

2π

+
ζ2nγ′′(ζ)√

2π
− ζ3γ′′(ζ)3/2n3/2Φn,ζ(ζ)

)
+ o

(
1√
n

)]

= en[γ(ζ)−ζγ′(ζ)]

(
K(ζ, ζ, n)√

n
+ o

(
1√
n

))
(15)

where the second equality follows from [3, Sec. XVI.4, Th. 1].
Note that substitution error in (15) converges only when the
condition in (3) is met. Combining (13)-(15) with the choice
nγ′(ζ) = R, we establish (4).

We next consider the tail probability in (5), i.e.,
P[
∑n

ℓ=1 Zℓ < R]. Since the proof of the saddlepoint approx-
imation of this tail probability is very similar to the proof of
(4), we will only focus on the differences. It follows that

P

[
n∑

ℓ=1

Zℓ < R

]
= enγ(ζ)−ζR

∫ 0

−∞
e−ζydv∗nζ (y). (16)

We again choose ζ such that nγ′(ζ) = R, and define

Ãζ = enγ(ζ)−ζR

∫ 0

−∞
e−ζydNn,γ′′(ζ)(y)

=
en[γ(ζ)−ζγ′(ζ)]√

2πnγ′′(ζ)

∫ 0

−∞
e−ζye

− y2

2nγ′′(ζ) dy

=
en[γ(ζ)−ζγ′(ζ)]

√
2π

∫ 0

−∞
e−ζt

√
nγ′′(ζ)e−t2/2dt

=
e
n
[
γ(ζ)−ζγ′(ζ)+ ζ2

2 γ′′(ζ)
]

√
2π

∫ 0

−∞
e

1
2 (t+ζ

√
nγ′′(ζ))2dt

=
e
n
[
γ(ζ)−ζγ′(ζ)+ ζ2

2 γ′′(ζ)
]

√
2π

∫ ζ
√

nγ′′(ζ)

−∞
e−

x2

2 dx

=
e
n
[
γ(ζ)−ζγ′(ζ)+ ζ2

2 γ′′(ζ)
]

√
2π

∫ ∞

−ζ
√

nγ′′(ζ)

e−
x2

2 dx

= e
n
[
γ(ζ)−ζγ′(ζ)+ ζ2

2 γ′′(ζ)
]
Q(−ζ

√
nγ′′(ζ))

= en[γ(ζ)−ζγ′(ζ)]Φn,ζ(−ζ) (17)

where the third equality by the change of variable t =
y/
√
nγ′′(ζ), and the fifth equality follows by the change of

variable x = t+ζ
√
nγ′′(ζ). The error incurred by substituting

v∗nζ by Nn,γ′′(ζ) is given by

enγ(ζ)−ζR

∫ 0

−∞
e−ζydv∗nζ (y)− Ãζ

= en[γ(ζ)−ζγ′(ζ)]

[(
vn∗ζ (0)−Nn,γ′′(ζ)(0)

)
+ζ

∫ 0

−∞

(
v∗nζ (y)−Nn,γ′′(ζ)(y)

)
eζydy

]
= en[γ(ζ)−ζγ′(ζ)]

[
1√
2π

γ′′′(ζ)

6γ′′(ζ)3/2
√
n

(
1 +

∫ 0

−∞
ζ

×
√
γ′′(ζ)n(1− z2)e−ζ

√
γ′′(ζ)nz− z2

2 dz

)
+ o

(
1√
n

)]

= en[γ(ζ)−ζγ′(ζ)]

[
γ′′′(ζ)

6γ′′(ζ)3/2
√
n

(
1√
2π

− ζ2γ′′(ζ)n√
2π

−ζ3(γ′′(ζ)n)3/2Φn,ζ(−ζ)
)
+ o

(
1√
n

)]

= en[γ(ζ)−ζγ′(ζ)]

(
−K(−ζ, ζ, n)√

n
+ o

(
1√
n

))
. (18)

By combining this result with Ãζ in (17) for nγ′(ζ) = R, we
establish (5).

B. Extension to the RCUs Bound

In this section, we will show how to obtain the saddlepoint
expansion of the tail probability appearing in the RCUs bound,
namely, P[

∑n
ℓ=1 Zℓ ≥ R+ logU ]. Different from the previous

section, we now have the term logU , where U is a uniformly
distributed random variable in the interval [0, 1]. To compute
the expansion of this tail probability, we will follow the steps
detailed in [1, App. 1-B] and [2, App. E]. We start with the
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case R > 0. If ζ ∈ [0, 1], our proof coincides with the one in
[1, App. 1-B]. Nevertheless, we will reproduce it here for the
sake of completeness. It follows that

P

[
n∑

ℓ=1

Zℓ ≥ R+ logU

]

= enγ(ζ)−ζR

∫ 1

0

∫ ∞

log u

e−ζydv∗nζ (y)du

= enγ(ζ)−ζR

∫ ∞

−∞

∫ min(1,ey)

0

e−ζydudv∗nζ (y)

= enγ(ζ)−ζR

(∫ ∞

0

e−ζydv∗nζ (y) +

∫ 0

−∞
e(1−ζ)ydv∗nζ (y)

)
.

(19)

The first term in (19) coincides with the Aζ given in (14).
Similarly, to analyze the second term, we first define

Bζ = enγ(ζ)−ζR

∫ 0

−∞
e(1−ζ)ydNn,γ′′(ζ)(y)

=
en[γ(ζ)−ζγ′(ζ)]√

2πnγ′′(ζ)

∫ 0

−∞
e(1−ζ)ye

− y2

2nγ′′(ζ) dy

=
en[γ(ζ)−ζγ′(ζ)]

√
2π

∫ 0

−∞
e(1−ζ)t

√
nγ′′(ζ)e−

t2

2 dt

=
en[γ(ζ)−ζγ′(ζ)+

(1−ζ)2

2 γ′′(ζ)]

√
2π

∫ ∞

ζ

e
− 1

2

(
t−(1−ζ)

√
nγ′′(ζ)

)2

dt

=
en[γ(ζ)−ζγ′(ζ)+

(1−ζ)2

2 γ′′(ζ)]

√
2π

∫ −(1−ζ)
√

nγ′′(ζ)

−∞
e−

x2

2 dx

=
en[γ(ζ)−ζγ′(ζ)+

(1−ζ)2

2 γ′′(ζ)]

√
2π

∫ ∞

(1−ζ)
√

nγ′′(ζ)

e−
x2

2 dx

= en[γ(ζ)−ζγ′(ζ)+
(1−ζ)2

2 γ′′(ζ)]Q
(
(1− ζ)

√
nγ′′(ζ)

)
= en[γ(ζ)−ζγ′(ζ)]Φn,ζ(1− ζ). (20)

The third equality follows by the change of variable t =
y/
√
nγ′′(ζ) and the fourth equality follows by the change of

variable x = t− (1− ζ)
√
nγ′′(ζ). By following steps similar

to (14)-(15) (where we studied the error incurred by replacing
v∗nζ with Nn,γ′′(ζ)) also with Bζ , after some mathematical
manipulations, it follows that

P

[
n∑

ℓ=1

Zℓ ≥ R+ logU

]
= en[γ(ζ)−ζγ′(ζ)]

×
[
Φn,ζ(ζ) + Φn,ζ(1− ζ) + o

(
1√
n

)]
(21)

which concludes the proof for ζ[0, 1]. It can be shown that (20)
tends to infinity as n→ ∞ when ζ > 1.1 To address the case
ζ > 1, we start with (19) and instead of making the choice of
ζ such that nγ′(ζ) = R, we choose ζ = 1. As a consequence,
we now need to analyze the error incurred by replacing v∗nζ
with the normal distribution that has mean nγ′(ζ) − R and

1This can be seen when analyzing the error incurred by substituting v∗nζ
by the normal distribution, and expanding the expression similar to (14)-(15).

variance nγ′′(ζ), denoted by Ñn,γ′′(ζ). We next expand the
first integral in (20), which we denote by

Cζ = enγ(ζ)−ζR

∫ ∞

0

e−ζydÑn,γ′′(ζ)(y)

=
enγ(ζ)−ζR√
2πnγ′′(ζ)

∫ ∞

0

e−ζye
− (y−nγ′(ζ)+R)2

2nγ′′(ζ) dy

= e
n
[
γ(ζ)−ζγ′(ζ)+ ζ2

2 γ′′(ζ)
]
Q

(
γ − nγ′(ζ)√
nγ′′(ζ)

+ ζ
√
nγ′′(ζ)

)
= en[γ(ζ)−ζγ′(ζ)]Φ̃n(ζ, ζ) (22)

where the third equality follows by the change of variables
y = t

√
nγ′′(ζ) + nγ′(ζ) − R and x = t + ζ

√
nγ′′(ζ), and

where

Φ̃b(a1, a2) = e
ba1

[
−γ′(1)−R+

γ′′(1)
2

]

×Q

(
a1
√
bγ′′(1)− a2

b(γ′(1) + R)√
bγ′′(1)

)
. (23)

By following the same steps (with a slightly different change
of variables), we next expand the second integral in (20),
which is denoted by

C̃(ζ) = enγ(ζ)−ζR

∫ 0

−∞
e(1−ζ)ydÑn,γ′′(ζ)(y)

=
enγ(ζ)−ζR√
2πγ′′(ζ)

∫ 0

−∞
e(1−ζ)ye

− (y−nγ′(ζ)+R)2

2nγ′′(ζ) dy

= enγ(ζ)−ζγ′(ζ)
[
Φ̃n(1− ζ,−ζ)

]
. (24)

Proceeding as in (14)-(15) with Cζ and C̃ζ particularized for
ζ = 1,2 it follows that for ζ > 1 and R > 0,

P

[
n∑

ℓ=1

Zℓ ≥ R+ logU

]
= enγ(1)−R

[
Φ̃n(1, 1)

+Φ̃n(0,−1) + o

(
1√
n

)]
. (25)

It only remains to show the saddlepoint expansion of the
tail probability P [

∑n
ℓ=1 Zℓ ≥ R+logU ] = 1−P [

∑n
ℓ=1 Zℓ <

R+logU ] when R < 0, in which case the choice nγ′(ζ) = R
yields ζ < 0. In this case, it follows that

P

[
n∑

ℓ=1

Zℓ < R+ logU

]

= enγ(ζ)−ζR

∫ 1

0

∫ log u

−∞
e−ζydv∗nζ (y)du

= enγ(ζ)−ζR

∫ 0

−∞

∫ 1

ey
e−ζydudv∗nζ (y)

= enγ(ζ)−ζR

(∫ 0

−∞
e−ζydv∗nζ (y) +

∫ 0

−∞
e(1−ζ)ydv∗nζ (y)

)
.

(26)

2The choice of ζ = 1 ensures that the exponential term e(1−ζ)y in (24)
does not go to infinity as n → ∞.
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Here, the first integral coincides with Ãζ and the second
integral coincides with Bζ . Thus, proceeding as in (14)-(15),
it can be shown that

P

[
n∑

ℓ=1

Zℓ ≥ R+ logU

]
= 1− en[γ(ζ)−ζγ′(ζ)]

[
Φn,ζ(−ζ)

−Φn,ζ(1− ζ) + o

(
1√
n

)]
(27)

which concludes the proof of the saddlepoint approximation
of the RCUs bound.

REFERENCES
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