I. PROOF FOR SADDLEPOINT APPROXIMATION ON RCUS BOUND

The proof of the saddlepoint approximation that we will show next follows the steps in [1, App. I.A] and [2, App. E], which in turn are mostly based on [3, Ch. XVI.4, Th.1].

A. Preliminaries

Let $\{Z_\ell\}_{\ell=1}^n$ be a sequence of i.i.d., real-valued, zero-mean random variables. The MGF of Z_ℓ is defined as

$$m(\zeta) = \mathbb{E}\left[e^{\zeta Z_{\ell}}\right] \tag{1}$$

and the CGF is defined as

$$\gamma(\zeta) = \log m(\zeta). \tag{2}$$

We assume that Z_{ℓ} is nonlattice. Indeed, in our setup, Z_{ℓ} is a continuous random variable. For lattice distributions, see [3, Ch. XVI.4, Th.2]. We further assume

$$\sup_{\zeta < \zeta < \overline{\zeta}} \left| \frac{d^3}{d\zeta^3} m(\zeta) \right| < \infty. \tag{3}$$

We next show the saddlepoint approximation for a simpler case than the one given by the RCUs bound, whose tail probability also presents a uniform random variable U in [0,1] in the expression. In particular we will show that

$$\mathbb{P}\left[\sum_{\ell=1}^{n} Z_{\ell} > \mathbf{R}\right] = e^{n(\gamma(\zeta) - \zeta \gamma'(\zeta))} \left[\Phi_{n,\zeta}(\zeta) + \frac{K(\zeta, \zeta, n)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)\right]$$
(4)

and

$$\mathbb{P}\left[\sum_{\ell=1}^{n} Z_{\ell} < \mathbf{R}\right] = 1 - e^{n[\gamma(\zeta) - \zeta\gamma'(\zeta)]} \left[\Phi_{n,\zeta}(-\zeta) - \frac{K(-\zeta,\zeta,n)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)\right]$$
(5)

where

$$K(u,\zeta,n) = \frac{\gamma'''(\zeta)}{6\gamma''(\zeta)^{3/2}} \left(-\frac{1}{\sqrt{2\pi}} + \frac{u^2 n \gamma''(\zeta)}{\sqrt{2\pi}} - u^3 (\gamma''(\zeta)n)^{3/2} \Phi_{n,\zeta}(u) \right)$$
(6)

and

$$\Phi_{b,\zeta}(u) = e^{b\frac{u^2}{2}\gamma''(\zeta)}Q\left(u\sqrt{b\gamma''(\zeta)}\right). \tag{7}$$

We start with $\mathbb{P}[\sum_{\ell=1}^n Z_\ell > \mathbb{R}]$ for $\mathbb{R} > 0$. Let $Y_\ell = Z_\ell - \tilde{\mathbb{R}}$, where $\tilde{\mathbb{R}} = \mathbb{R}/n$ and let F denote the distribution of Y_ℓ . Then, the CGF of Y_ℓ is given by $\tilde{\gamma}(\zeta) = \gamma(\zeta) - \zeta \tilde{\mathbb{R}}$. Let the tilted random variable V_ℓ have distribution

$$v_{\zeta}(x) = e^{-\tilde{\gamma}(\zeta)} \int_{-\infty}^{x} e^{\zeta t} dF(t)$$
 (8)

$$= e^{-\gamma(\zeta) + \zeta \tilde{R}} \int_{-\infty}^{x} e^{\zeta t} dF(t). \tag{9}$$

Let $\psi_{\zeta}(\tau)$ denote the MGF of the tilted random variable V_{ℓ} , which is given by

$$\psi_{\zeta}(\tau) = \int_{-\infty}^{\infty} e^{\tau x} dv_{\zeta}(x)$$

$$= \int_{-\infty}^{\infty} e^{\tau x - \gamma(\zeta) + \zeta \tilde{R} + \zeta x} dF(x)$$

$$= e^{-\gamma(\zeta) + \zeta \tilde{R}} \int_{-\infty}^{\infty} e^{(\tau + \zeta) x} dF(x)$$

$$= e^{-\gamma(\zeta) + \zeta \tilde{R}} \mathbb{E} \left[e^{\tau + \zeta(Z_{\ell} - \tilde{R})} \right]$$

$$= e^{-\gamma(\zeta)} \mathbb{E} \left[e^{(\tau + \zeta) Z_{\ell}} \right] e^{-\tau \tilde{R}}$$

$$= \frac{m(\tau + \zeta)}{m(\zeta)} e^{-\tau \tilde{R}}.$$
(10)

Since $\mathbb{E}[V_\ell]=\psi_\zeta'(0)$, where the derivative is taken with respect to τ , it follows that

$$\mathbb{E}[V_{\ell}] = \psi'_{\zeta}(0)$$

$$= \left(\frac{m'(\tau + \zeta)}{m(\zeta)} e^{-\tau \tilde{R}} - \tilde{R} \frac{m(\tau + \zeta)}{m(\zeta)} e^{-\tau \tilde{R}} \right) \Big|_{\tau=0}$$

$$= \frac{m'(\zeta)}{m(\zeta)} - \tilde{R}$$

$$= \gamma'(\zeta) - \tilde{R}. \tag{11}$$

Similarly, $\mathbb{V}\operatorname{ar}[V_{\ell}] = \mathbb{E}\left[V_{\ell}^2\right] - \mathbb{E}\left[V_{\ell}\right]^2 = \gamma''(\zeta).$

We denote by F^{*n} the distribution of $\sum_{\ell=1}^{n} Y_{\ell}$ and by v_{ζ}^{*n} the distribution of $\sum_{\ell=1}^{n} V_{\ell}$. Proceeding as in (8), we obtain

$$v_{\zeta}^{*n}(x) = e^{-n\tilde{\gamma}(\zeta)} \int_{-\infty}^{x} e^{\zeta t} dF^{*n}(t)$$
$$= e^{-n\gamma(\zeta) + \zeta \tilde{R}} \int_{-\infty}^{x} e^{\zeta t} dF^{*n}(t). \tag{12}$$

We next require an expression for $1-F^{*n}$ as a function of $v_{\zeta}^{*n}(x)$, which can be obtained by inverting (12) and noting that $\mathbb{P}[\sum_{\ell=1}^n Z_\ell \geq \mathbb{R}] = 1 - F^{*n}(\mathbb{R})$. Thus,

$$\mathbb{P}\left[\sum_{\ell=1}^{n} Z_{\ell} \ge R\right] = e^{n\gamma(\zeta) - \zeta R} \int_{0}^{\infty} e^{-\zeta y} dv_{\zeta}^{*n}(y). \tag{13}$$

We next choose ζ such that $n\gamma'(\zeta) = R$, which ensures that the distribution v_{ζ}^{*n} has zero mean. We then replace the distribution v_{ζ}^{*n} by the zero-mean normal distribution with variance $n\gamma''(\zeta)$, denoted by $\mathfrak{N}_{n,\gamma''(\zeta)}$, and analyze the error

incurred by this substitution. Let first

$$A_{\zeta} = e^{n\gamma(\zeta) - \zeta R} \int_{0}^{\infty} e^{-\zeta y} d\mathfrak{N}_{n,\gamma''(\zeta)}(y)$$

$$= \frac{e^{n[\gamma(\zeta) - \zeta\gamma'(\zeta)]}}{\sqrt{2\pi n \gamma''(\zeta)}} \int_{0}^{\infty} e^{-\zeta y} e^{-\frac{y^{2}}{2n\gamma''(\zeta)}} dy$$

$$= \frac{e^{n[\gamma(\zeta) - \zeta\gamma'(\zeta)]}}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\zeta t} \sqrt{n\gamma''(\zeta)} e^{-\frac{t^{2}}{2}} dt$$

$$= \frac{e^{n[\gamma(\zeta) - \zeta\gamma'(\zeta) + \frac{\zeta^{2}}{2}\gamma''(\zeta)]}}{\sqrt{2\pi}} \int_{\zeta}^{\infty} e^{-\frac{1}{2}\left(t + \zeta\sqrt{n\gamma''(\zeta)}\right)^{2}} dt$$

$$= \frac{e^{n[\gamma(\zeta) - \zeta\gamma'(\zeta) + \frac{\zeta^{2}}{2}\gamma''(\zeta)]}}{\sqrt{2\pi}} \int_{\zeta\sqrt{n\gamma''(\zeta)}}^{\infty} e^{-\frac{x^{2}}{2}} dx$$

$$= e^{n[\gamma(\zeta) - \zeta\gamma'(\zeta) + \frac{\zeta^{2}}{2}\gamma''(\zeta)]} Q(\zeta\sqrt{n\gamma''(\zeta)})$$

$$= e^{n[\gamma(\zeta) - \zeta\gamma'(\zeta)]} \Phi_{n,\zeta}(\zeta) \tag{14}$$

where the third equality follows by the change of variable $t = y/\sqrt{n\gamma''(\zeta)}$, and the fifth equality follows by the change of variable $x = t + \zeta\sqrt{n\gamma''(\zeta)}$.

We are now ready to asses the error incurred by replacing v_{ζ}^{*n} with $\mathfrak{N}_{n,\gamma''(\zeta)}$ in (13), which is given by

$$\begin{split} e^{n\gamma(\zeta)-\zeta\mathcal{R}} & \int_{0}^{\infty} e^{-\zeta y} dv_{\zeta}^{*n}(y) - A_{\zeta} \\ &= e^{n[\gamma(\zeta)-\zeta\gamma(\zeta)]} \bigg[- \left(v_{\zeta}^{*n}(0) - \mathfrak{N}_{n,\gamma''(\zeta)} \right) \\ & + \zeta \int_{0}^{\infty} \left(v_{\zeta}^{*n}(y) - \mathfrak{N}_{n,\gamma''(\zeta)}(y) \right) e^{-\zeta y} dy \bigg] \\ &= e^{n[\gamma(\zeta)-\zeta\gamma'(\zeta)]} \bigg[\frac{\gamma'''(\zeta)}{6\gamma''(\zeta)^{3/2} \sqrt{n}} \bigg(-\frac{1}{\sqrt{2\pi}} \\ & + \frac{\zeta^{2}n\gamma''(\zeta)}{\sqrt{2\pi}} - \zeta^{3}\gamma''(\zeta)^{3/2} n^{3/2} \Phi_{n,\zeta}(\zeta) \bigg) + o\bigg(\frac{1}{\sqrt{n}} \bigg) \bigg] \\ &= e^{n[\gamma(\zeta)-\zeta\gamma'(\zeta)]} \bigg(\frac{K(\zeta,\zeta,n)}{\sqrt{n}} + o\bigg(\frac{1}{\sqrt{n}} \bigg) \bigg) \end{split} \tag{15}$$

where the second equality follows from [3, Sec. XVI.4, Th. 1]. Note that substitution error in (15) converges only when the condition in (3) is met. Combining (13)-(15) with the choice $n\gamma'(\zeta) = R$, we establish (4).

We next consider the tail probability in (5), i.e., $\mathbb{P}[\sum_{\ell=1}^n Z_\ell < R]$. Since the proof of the saddlepoint approximation of this tail probability is very similar to the proof of (4), we will only focus on the differences. It follows that

$$\mathbb{P}\left[\sum_{\ell=1}^{n} Z_{\ell} < \mathbf{R}\right] = e^{n\gamma(\zeta) - \zeta \mathbf{R}} \int_{-\infty}^{0} e^{-\zeta y} dv_{\zeta}^{*n}(y). \tag{16}$$

We again choose ζ such that $n\gamma'(\zeta) = R$, and define

$$\begin{split} \tilde{A}_{\zeta} &= e^{n\gamma(\zeta) - \zeta R} \int_{-\infty}^{0} e^{-\zeta y} d\mathfrak{N}_{n,\gamma''(\zeta)}(y) \\ &= \frac{e^{n[\gamma(\zeta) - \zeta\gamma'(\zeta)]}}{\sqrt{2\pi n\gamma''(\zeta)}} \int_{-\infty}^{0} e^{-\zeta y} e^{-\frac{y^{2}}{2n\gamma''(\zeta)}} dy \\ &= \frac{e^{n[\gamma(\zeta) - \zeta\gamma'(\zeta)]}}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{-\zeta t \sqrt{n\gamma''(\zeta)}} e^{-t^{2}/2} dt \\ &= \frac{e^{n\left[\gamma(\zeta) - \zeta\gamma'(\zeta) + \frac{\zeta^{2}}{2}\gamma''(\zeta)\right]}}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{\frac{1}{2}(t + \zeta\sqrt{n\gamma''(\zeta)})^{2}} dt \\ &= \frac{e^{n\left[\gamma(\zeta) - \zeta\gamma'(\zeta) + \frac{\zeta^{2}}{2}\gamma''(\zeta)\right]}}{\sqrt{2\pi}} \int_{-\infty}^{\zeta\sqrt{n\gamma''(\zeta)}} e^{-\frac{x^{2}}{2}} dx \\ &= \frac{e^{n\left[\gamma(\zeta) - \zeta\gamma'(\zeta) + \frac{\zeta^{2}}{2}\gamma''(\zeta)\right]}}{\sqrt{2\pi}} \int_{-\zeta\sqrt{n\gamma''(\zeta)}}^{\infty} e^{-\frac{x^{2}}{2}} dx \\ &= e^{n\left[\gamma(\zeta) - \zeta\gamma'(\zeta) + \frac{\zeta^{2}}{2}\gamma''(\zeta)\right]} Q(-\zeta\sqrt{n\gamma''(\zeta)}) \\ &= e^{n\left[\gamma(\zeta) - \zeta\gamma'(\zeta) + \frac{\zeta^{2}}{2}\gamma''(\zeta)\right]} Q(-\zeta\sqrt{n\gamma''(\zeta)}) \end{split}$$

where the third equality by the change of variable $t=y/\sqrt{n\gamma''(\zeta)}$, and the fifth equality follows by the change of variable $x=t+\zeta\sqrt{n\gamma''(\zeta)}$. The error incurred by substituting v_{ζ}^{*n} by $\mathfrak{N}_{n,\gamma''(\zeta)}$ is given by

$$e^{n\gamma(\zeta)-\zeta R} \int_{-\infty}^{0} e^{-\zeta y} dv_{\zeta}^{*n}(y) - \tilde{A}_{\zeta}$$

$$= e^{n[\gamma(\zeta)-\zeta\gamma'(\zeta)]} \left[\left(v_{\zeta}^{n*}(0) - \mathfrak{N}_{n,\gamma''(\zeta)}(0) \right) + \zeta \int_{-\infty}^{0} \left(v_{\zeta}^{*n}(y) - \mathfrak{N}_{n,\gamma''(\zeta)}(y) \right) e^{\zeta y} dy \right]$$

$$= e^{n[\gamma(\zeta)-\zeta\gamma'(\zeta)]} \left[\frac{1}{\sqrt{2\pi}} \frac{\gamma'''(\zeta)}{6\gamma''(\zeta)^{3/2} \sqrt{n}} \left(1 + \int_{-\infty}^{0} \zeta \right) + o\left(\frac{1}{\sqrt{n}} \right) \right]$$

$$= e^{n[\gamma(\zeta)-\zeta\gamma'(\zeta)]} \left[\frac{\gamma'''(\zeta)}{6\gamma''(\zeta)^{3/2} \sqrt{n}} \left(\frac{1}{\sqrt{2\pi}} - \frac{\zeta^2 \gamma''(\zeta)n}{\sqrt{2\pi}} \right) - \zeta^3 (\gamma''(\zeta)n)^{3/2} \Phi_{n,\zeta}(-\zeta) + o\left(\frac{1}{\sqrt{n}} \right) \right]$$

$$= e^{n[\gamma(\zeta)-\zeta\gamma'(\zeta)]} \left(-\frac{K(-\zeta,\zeta,n)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}} \right) \right). \tag{18}$$

By combining this result with \tilde{A}_{ζ} in (17) for $n\gamma'(\zeta) = \mathbb{R}$, we establish (5).

B. Extension to the RCUs Bound

In this section, we will show how to obtain the saddlepoint expansion of the tail probability appearing in the RCUs bound, namely, $\mathbb{P}[\sum_{\ell=1}^n Z_\ell \geq \mathbb{R} + \log U]$. Different from the previous section, we now have the term $\log U$, where U is a uniformly distributed random variable in the interval [0,1]. To compute the expansion of this tail probability, we will follow the steps detailed in $[1, \mathrm{App.}\ 1\text{-B}]$ and $[2, \mathrm{App.}\ \mathrm{E}]$. We start with the

case R>0. If $\zeta\in[0,1]$, our proof coincides with the one in [1, App. 1-B]. Nevertheless, we will reproduce it here for the sake of completeness. It follows that

$$\mathbb{P}\left[\sum_{\ell=1}^{n} Z_{\ell} \ge R + \log U\right] \\
= e^{n\gamma(\zeta) - \zeta R} \int_{0}^{1} \int_{\log u}^{\infty} e^{-\zeta y} dv_{\zeta}^{*n}(y) du \\
= e^{n\gamma(\zeta) - \zeta R} \int_{-\infty}^{\infty} \int_{0}^{\min(1, e^{y})} e^{-\zeta y} du dv_{\zeta}^{*n}(y) \\
= e^{n\gamma(\zeta) - \zeta R} \left(\int_{0}^{\infty} e^{-\zeta y} dv_{\zeta}^{*n}(y) + \int_{-\infty}^{0} e^{(1-\zeta)y} dv_{\zeta}^{*n}(y)\right). \tag{19}$$

The first term in (19) coincides with the A_{ζ} given in (14). Similarly, to analyze the second term, we first define

$$B_{\zeta} = e^{n\gamma(\zeta) - \zeta R} \int_{-\infty}^{0} e^{(1-\zeta)y} d\mathfrak{N}_{n,\gamma''(\zeta)}(y)$$

$$= \frac{e^{n[\gamma(\zeta) - \zeta\gamma'(\zeta)]}}{\sqrt{2\pi n\gamma''(\zeta)}} \int_{-\infty}^{0} e^{(1-\zeta)y} e^{-\frac{y^{2}}{2n\gamma''(\zeta)}} dy$$

$$= \frac{e^{n[\gamma(\zeta) - \zeta\gamma'(\zeta)]}}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{(1-\zeta)t} \sqrt{n\gamma''(\zeta)} e^{-\frac{t^{2}}{2}} dt$$

$$= \frac{e^{n[\gamma(\zeta) - \zeta\gamma'(\zeta) + \frac{(1-\zeta)^{2}}{2}\gamma''(\zeta)]}}{\sqrt{2\pi}} \int_{\zeta}^{\infty} e^{-\frac{1}{2}\left(t - (1-\zeta)\sqrt{n\gamma''(\zeta)}\right)^{2}} dt$$

$$= \frac{e^{n[\gamma(\zeta) - \zeta\gamma'(\zeta) + \frac{(1-\zeta)^{2}}{2}\gamma''(\zeta)]}}{\sqrt{2\pi}} \int_{-\infty}^{-(1-\zeta)\sqrt{n\gamma''(\zeta)}} e^{-\frac{x^{2}}{2}} dx$$

$$= \frac{e^{n[\gamma(\zeta) - \zeta\gamma'(\zeta) + \frac{(1-\zeta)^{2}}{2}\gamma''(\zeta)]}}{\sqrt{2\pi}} \int_{(1-\zeta)\sqrt{n\gamma''(\zeta)}}^{\infty} e^{-\frac{x^{2}}{2}} dx$$

$$= e^{n[\gamma(\zeta) - \zeta\gamma'(\zeta) + \frac{(1-\zeta)^{2}}{2}\gamma''(\zeta)]} Q\left((1-\zeta)\sqrt{n\gamma''(\zeta)}\right)$$

$$= e^{n[\gamma(\zeta) - \zeta\gamma'(\zeta)]} \Phi_{n,\zeta}(1-\zeta). \tag{20}$$

The third equality follows by the change of variable $t=y/\sqrt{n\gamma''(\zeta)}$ and the fourth equality follows by the change of variable $x=t-(1-\zeta)\sqrt{n\gamma''(\zeta)}$. By following steps similar to (14)-(15) (where we studied the error incurred by replacing v_{ζ}^{*n} with $\mathfrak{N}_{n,\gamma''(\zeta)}$) also with B_{ζ} , after some mathematical manipulations, it follows that

$$\mathbb{P}\left[\sum_{\ell=1}^{n} Z_{\ell} \ge R + \log U\right] = e^{n[\gamma(\zeta) - \zeta \gamma'(\zeta)]} \times \left[\Phi_{n,\zeta}(\zeta) + \Phi_{n,\zeta}(1 - \zeta) + o\left(\frac{1}{\sqrt{n}}\right)\right]$$
(21)

which concludes the proof for $\zeta[0,1]$. It can be shown that (20) tends to infinity as $n\to\infty$ when $\zeta>1$. To address the case $\zeta>1$, we start with (19) and instead of making the choice of ζ such that $n\gamma'(\zeta)=R$, we choose $\zeta=1$. As a consequence, we now need to analyze the error incurred by replacing v_ζ^{*n} with the normal distribution that has mean $n\gamma'(\zeta)-R$ and

variance $n\gamma''(\zeta)$, denoted by $\tilde{\mathfrak{N}}_{n,\gamma''(\zeta)}$. We next expand the first integral in (20), which we denote by

$$C_{\zeta} = e^{n\gamma(\zeta) - \zeta R} \int_{0}^{\infty} e^{-\zeta y} d\tilde{\mathfrak{N}}_{n,\gamma''(\zeta)}(y)$$

$$= \frac{e^{n\gamma(\zeta) - \zeta R}}{\sqrt{2\pi n\gamma''(\zeta)}} \int_{0}^{\infty} e^{-\zeta y} e^{-\frac{(y - n\gamma'(\zeta) + R)^{2}}{2n\gamma''(\zeta)}} dy$$

$$= e^{n\left[\gamma(\zeta) - \zeta\gamma'(\zeta) + \frac{\zeta^{2}}{2}\gamma''(\zeta)\right]} Q\left(\frac{\gamma - n\gamma'(\zeta)}{\sqrt{n\gamma''(\zeta)}} + \zeta\sqrt{n\gamma''(\zeta)}\right)$$

$$= e^{n\left[\gamma(\zeta) - \zeta\gamma'(\zeta)\right]} \tilde{\Phi}_{n}(\zeta, \zeta) \tag{22}$$

where the third equality follows by the change of variables $y = t\sqrt{n\gamma''(\zeta)} + n\gamma'(\zeta) - R$ and $x = t + \zeta\sqrt{n\gamma''(\zeta)}$, and where

$$\tilde{\Phi}_{b}(a_{1}, a_{2}) = e^{ba_{1}\left[-\gamma'(1) - R + \frac{\gamma''(1)}{2}\right]} \times Q\left(a_{1}\sqrt{b\gamma''(1)} - a_{2}\frac{b(\gamma'(1) + R)}{\sqrt{b\gamma''(1)}}\right). \quad (23)$$

By following the same steps (with a slightly different change of variables), we next expand the second integral in (20), which is denoted by

$$\begin{split} \tilde{C}_{(\zeta)} &= e^{n\gamma(\zeta) - \zeta R} \int_{-\infty}^{0} e^{(1-\zeta)y} d\tilde{\mathfrak{M}}_{n,\gamma''(\zeta)}(y) \\ &= \frac{e^{n\gamma(\zeta) - \zeta R}}{\sqrt{2\pi\gamma''(\zeta)}} \int_{-\infty}^{0} e^{(1-\zeta)y} e^{-\frac{(y-n\gamma'(\zeta) + R)^{2}}{2n\gamma''(\zeta)}} dy \\ &= e^{n\gamma(\zeta) - \zeta\gamma'(\zeta)} \left[\tilde{\Phi}_{n}(1-\zeta, -\zeta)\right]. \end{split} \tag{24}$$

Proceeding as in (14)-(15) with C_{ζ} and \tilde{C}_{ζ} particularized for $\zeta=1,^2$ it follows that for $\zeta>1$ and R>0,

$$\mathbb{P}\left[\sum_{\ell=1}^{n} Z_{\ell} \ge R + \log U\right] = e^{n\gamma(1) - R} \left[\tilde{\Phi}_{n}(1, 1) + \tilde{\Phi}_{n}(0, -1) + o\left(\frac{1}{\sqrt{n}}\right)\right]. \tag{25}$$

It only remains to show the saddlepoint expansion of the tail probability $P[\sum_{\ell=1}^n Z_\ell \geq \mathrm{R} + \log U] = 1 - P[\sum_{\ell=1}^n Z_\ell < \mathrm{R} + \log U]$ when $\mathrm{R} < 0$, in which case the choice $n\gamma'(\zeta) = \mathrm{R}$ yields $\zeta < 0$. In this case, it follows that

$$\mathbb{P}\left[\sum_{\ell=1}^{n} Z_{\ell} < R + \log U\right] \\
= e^{n\gamma(\zeta) - \zeta R} \int_{0}^{1} \int_{-\infty}^{\log u} e^{-\zeta y} dv_{\zeta}^{*n}(y) du \\
= e^{n\gamma(\zeta) - \zeta R} \int_{-\infty}^{0} \int_{e^{y}}^{1} e^{-\zeta y} du dv_{\zeta}^{*n}(y) \\
= e^{n\gamma(\zeta) - \zeta R} \left(\int_{-\infty}^{0} e^{-\zeta y} dv_{\zeta}^{*n}(y) + \int_{-\infty}^{0} e^{(1-\zeta)y} dv_{\zeta}^{*n}(y)\right).$$
(26)

²The choice of $\zeta=1$ ensures that the exponential term $e^{(1-\zeta)y}$ in (24) does not go to infinity as $n\to\infty$.

¹This can be seen when analyzing the error incurred by substituting v_{ζ}^{*n} by the normal distribution, and expanding the expression similar to (14)-(15).

Here, the first integral coincides with \tilde{A}_{ζ} and the second integral coincides with B_{ζ} . Thus, proceeding as in (14)-(15), it can be shown that

$$P\left[\sum_{\ell=1}^{n} Z_{\ell} \ge R + \log U\right] = 1 - e^{n\left[\gamma(\zeta) - \zeta\gamma'(\zeta)\right]} \left[\Phi_{n,\zeta}(-\zeta) - \Phi_{n,\zeta}(1-\zeta) + o\left(\frac{1}{\sqrt{n}}\right)\right]$$
(27)

which concludes the proof of the saddlepoint approximation of the RCUs bound.

REFERENCES

- [1] A. Lancho, J. Östman, G. Durisi, T. Koch, and G. Vazquez-Vilar, "Saddlepoint approximations for short-packet wireless communications," *IEEE Trans. Wireless Commun.*, vol. 19, no. 7, pp. 4831–4846, Jul. 2020.
- [2] J. Scarlett, A. Martinez, and A. Guillén i Fàbregas, "Mismatched decoding: Error exponents, second-order rates and saddlepoint approximations," *IEEE Trans. Inf. Theory*, vol. 60, no. 5, pp. 2647–2666, May 2014.
- [3] W. Feller, An introduction to probability theory and its applications. Wiley, 1971, vol. 2.