I. PROOF FOR SADDLEPOINT APPROXIMATION ON RCUSs
BOUND

The proof of the saddlepoint approximation that we will
show next follows the steps in [1, App. I.A] and [2, App. EJ,
which in turn are mostly based on [3, Ch. XVIL.4, Th.1].

A. Preliminaries

Let {Z,;}}_, be a sequence of i.i.d., real-valued, zero-mean
random variables. The MGF of Z, is defined as

m(¢) = E[e$%] (1)
and the CGF is defined as
7(¢) = logm(C). (2)

We assume that Z, is nonlattice. Indeed, in our setup, Z, is
a continuous random variable. For lattice distributions, see [3,
Ch. XVI1.4, Th.2]. We further assume
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We next show the saddlepoint approximation for a simpler
case than the one given by the RCUs bound, whose tail
probability also presents a uniform random variable U in [0, 1]
in the expression. In particular we will show that
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We start with P[>")_, Z, > R] for R > 0. Let Y; = Z, — R,
where R = R /n and let F' denote the distribution of Y;. Then,
the CGF of Y, is given by 7(¢) = 7(¢) — CR. Let the tilted
random variable V; have distribution
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Let ¢¢(7) denote the MGF of the tilted random variable V,
which is given by
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Since E[Vi] = ;(0), where the derivative is taken with
respect to 7, it follows that

Similarly, Var[V;] = E[Vﬂ _ E[W]Q =~"(0).

We denote by F*" the distribution of »_,_, Y; and by s
the distribution of »_,_, V;. Proceeding as in (8), we obtain

v (z) = e () / eStdF* " (t)
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We next require an expression for 1 — F*" as a function of
v¢"(x), which can be obtained by inverting (12) and noting
that P[}_,_, Z, > R] = 1 — F*"(R). Thus,

P
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We next choose ¢ such that ny'(¢) = R, which ensures
that the distribution v;™ has zero mean. We then replace the
distribution v!™ by the zero-mean normal distribution with
variance ny"(¢), denoted by I, .~ (), and analyze the error



We again choose ¢ such that ny/(¢) = R, and define

0
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incurred by this substitution. Let first
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where the third equality follows by the change of variable
t =y/4/nvy"(¢), and the fifth equality follows by the change

of variable z =t + (/nvy"(().

where the third equality by the change of variable ¢ =
y/+/ny"(C), and the fifth equality follows by the change of
Variable x = t+{+/ny"(¢). The error incurred by substituting

We are now ready to asses the error incurred by replacing
vg"™ with 9y, ¢y in (13), which is given by
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where the second equality follows from [3, Sec. XVIL.4, Th. 1].
Note that substitution error in (15) converges only when the
condition in (3) is met. Combining (13)-(15) with the choice
nvy'(¢) = R, we establish (4).

We next consider the tail probability in (5), ie.,
P[>",_, Z¢ < R]. Since the proof of the saddlepoint approx-
imation of this tail probability is very similar to the proof of
(4), we will only focus on the differences. It follows that
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By combining this result with A in (17) for ny/(¢) = R, we

establish (5).

B. Extension to the RCUs Bound

In this section, we will show how to obtain the saddlepoint
expansion of the tail probability appearing in the RCUs bound,
namely, P[>";_, Z, > R + log U]. Different from the previous
section, we now have the term log U, where U is a uniformly
distributed random variable in the interval [0,1]. To compute
the expansion of this tail probability, we will follow the steps
detailed in [1, App. 1-B] and [2, App. E]. We start with the



case R > 0. If ¢ € [0, 1], our proof coincides with the one in
[1, App. 1-B]. Nevertheless, we will reproduce it here for the
sake of completeness. It follows that
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The first term in (19) coincides with the A; given in (14).
Similarly, to analyze the second term, we first define
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The third equality follows by the change of variable t =
y/+/ny"(¢) and the fourth equality follows by the change of
variable x =t — (1 — {)/ny"(¢). By following steps similar
to (14)-(15) (where we studied the error incurred by replacing
vZ‘” with ‘ﬂnﬁn@)) also with B¢, after some mathematical
manipulations, it follows that
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which concludes the proof for ¢[0, 1]. It can be shown that (20)
tends to infinity as n — oo when ¢ > 1.! To address the case
¢ > 1, we start with (19) and instead of making the choice of
¢ such that ny/(¢) = R, we choose ¢ = 1. As a consequence,
we now need to analyze the error incurred by replacing vZ™
with the normal distribution that has mean n+'(¢) — R and

IThis can be seen when analyzing the error incurred by substituting v*™
by the normal distribution, and expanding the expression similar to (14)—(1%).

variance ny”’(¢), denoted by ‘ﬁn,w(cy We next expand the
first integral in (20), which we denote by
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where the third equality follows by the change of variables
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By following the same steps (with a slightly different change

of variables), we next expand the second integral in (20),
which is denoted by
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Proceeding as in (14)-(15) with C¢ and C~’< particularized for
¢ = 1,2 it follows that for ¢ > 1 and R > 0,
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It only remains to show the saddlepoint expansion of the
tail probability P[>, , Zy > R+logU] =1-P[>",_, Z; <
R+1log U] when R < 0, in which case the choice ny/({) = R
yields ¢ < 0. In this case, it follows that
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2The choice of ¢ = 1 ensures that the exponential term e(1=0v i (24)
does not go to infinity as n — oo.



Here, the first integral coincides with flc and the second
integral coincides with B.. Thus, proceeding as in (14)-(15),
it can be shown that
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which concludes the proof of the saddlepoint approximation
of the RCUs bound.
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