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Abstract

We propose a framework to evaluate the random-coding union bound with parameter s (RCUs) on

the error probability achievable in the finite-blocklength regime for a pilot-assisted transmission scheme

operating over an imperfectly synchronized and memoryless block-fading channel. Unlike previously

reported results, our framework does not assume perfect synchronization. Instead, we take advantage

of the pilots for both synchronization and channel estimation. Additionally, we utilize the saddlepoint

approximation to provide a numerically efficient method for evaluating the RCUs bound in this scenario.

Our numerical experiments show that the saddlepoint approximation accurately represents the RCUs

bound over a wide range of parameters. Furthermore, with the suggested synchronization algorithm, the

SNR penalty of the imperfect synchronization at the target packet error probability 10−5 is observed to

be about 0.6 dB.

I. INTRODUCTION

The rapid advancement of electronic devices has paved the way for the rise of novel

applications like remote surgery [1], [2], factory automation [3] and autonomous driving that

significantly impact various aspects of people’s lives. However, these applications generate

substantial data traffic, posing a formidable challenge for current cellular communication

technologies to address. The total mobile data traffic is projected to reach 329 exabytes per

month by the end of 2028, a significant increase compared to the 93 exabytes per month recorded

in 2022 [4]. Handling the different requirements of these applications is a difficult task and

5G is envisioned to support all these requirements [5]. One interesting scenario, denoted as

ultra-reliable low-latency communication (URLLC), is designed for mission-critical applications

targeting 99.999% reliability with end-to-end latency as low as 1ms [6]. Moreover, 6G is targeting

even higher reliability, with the goal of achieving 10−5 − 10−7 packet error rate with a more

stringent latency constraint [7], [8].
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A key feature of URLLC traffic is the frequent use of small information payloads accompanied

by short packets which consist of a limited number of encoded symbols. To understand the need

for short packets, it is important to remember that the size of a data packet is determined

by the available bandwidth and the signal duration. In URLLC, the duration of the signal is

constrained due to the latency requirements imposed by specific applications such as automated

factory control and critical internet-of-things services. This limitation on signal duration is crucial

to ensure timely and responsive communication. Additionally, the available bandwidth is often

limited in URLLC scenarios, since the transmission of multiple users needs to be orthogonalized

in order to mitigate multiuser interference. Such interference can have a detrimental effect on

the packet error probability and overall system performance. Therefore, the allocation of limited

bandwidth resources becomes a critical factor in URLLC communication. The conventional

asymptotic performance metrics commonly employed in the design of communication systems,

namely the ergodic and outage rates, are not suitable for the short-packet regime [9]. Therefore,

there is a need for a more accurate characterization of the tradeoff between transmission rate and

error probability in order to address the specific requirements of short-packet communications.

Due to the use of short packets in URLLC, the field of finite-blocklength information theory

gained significant attention over the last decade, particularly following the seminal work from

Polyanskiy [10]. This theory offers a precise understanding of the tradeoffs in the non-asymptotic

upper (achievability) and lower (converse) bounds on the minimum error probability for a given

SNR, transmission rate, and packet size. These bounds offer valuable insights into the limits of

a communication system’s performance when operating with finite blocklengths.

In this paper, we focus on communication over memoryless block-fading channels with imper-

fect synchronization. We propose a computationally efficient method based on the saddlepoint

approximation technique [11], to evaluate the random coding union bound with parameter s

(RCUs) proposed in [12]. This bound is particularly well-suited for communication over fading

channels due to its ability to provide achievable results applicable to both the optimal noncoherent

maximum-likelihood (ML) decoder and more practically significant decoders that utilize pilot-

assisted transmission (PAT) [13]. One such example is using the pilots for delay and channel

estimation, and then treating these estimates as perfect via the use of scaled nearest-neighbor

(SNN) decoder [14]. Approximation methods such as the one proposed in this paper are necessary

since evaluating the RCUs bound (and other available information-theoretic error-probability

bounds) for scenarios of interest for URLLC can be extremely computationally expensive [15],
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[16]. Indeed, due to this complexity, the RCUs bound is not feasible to be used directly within

URLLC optimization routines such as resource-allocation [17], [18] and scheduling algorithms

[19], [20].

State of the art: In the literature, the most common approach while benchmarking a URLLC

system is either assuming perfect channel state information and synchronization at the receiver

or assuming perfect synchronization and only dealing with imperfect channel estimation. In

both cases, the random variable whose tail probability is of interest can be written as a sum

of independent random variables. Then this tail probability can be approximated by a Gaussian

tail probability using central-limit theorem. This approximation is typically called the normal

approximation [10]. Typically, the normal approximation proves to be accurate when dealing with

moderate error probabilities and when the transmission rate approaches the channel capacity [21].

Since this is not a viable assumption in URLLC, this approximation does not provide an accurate

characterization of the RCUs bound for the error probabilities relevant for the URLLC regime

[12], [22].

A much more accurate approximation (e.g., [21], [23], [24]) can be obtained through the

saddlepoint method which consists of applying normal approximation over a tilted distribution

[11], [25]. For the case of the optimal ML decoder, the saddlepoint approximation is studied in

[21]. The authors of [24] have provided an analysis using saddlepoint approximation of RCUs

bound for PAT transmission, SNN decoding over SISO and MIMO channels. In [13], [22] the

saddlepoint approximation for PAT transmission and SNN decoding over massive MIMO is

computed when only one fading block is available. This work has been extended for the case

of multiple fading blocks in [16].

All of the aforementioned references assume perfect synchronization in their system model

which simplifies both normal and saddlepoint approximations. When synchronization is im-

perfect, the underlying assumption that has been made in these approximations (i.e., received

vector having independent symbols per channel use), does not hold anymore. As explained in

[11, Ch. 6], it is possible to derive a saddlepoint approximation when the tail probability of

interest is written as a sum of dependent random variables, and its usefulness in the general

case will be investigated in this work. As we shall see, the imperfect synchronization causes

the random variables to be dependent in a structured manner which we take advantage of and

derive a saddlepoint approximation for the tail probability of a Markov chain, which has also

been studied in [11, Ch. 9].
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Contributions: In this paper, we provide a framework that takes imperfect synchronization

into account to provide design guidelines for the URLLC regime. To do so, we have used the

RCUs bound for the case of PAT and SNN decoding. Both the synchronization and channel

estimation have been obtained imperfectly using the pilot symbols. We then show how the

imperfect synchronization causes the data symbols in a fading block to be dependent. Noting

that this dependence violates one of the fundamental assumptions of the previously reported

saddlepoint approximations for RCUs bound, we derive a saddlepoint approximation tailored for

this unique case. Our numerical analyses show that the saddlepoint approximation is accurate

for a wide range of parameters. Additionally, we observed that with PAT, the impact of the

imperfect synchronization diminishes as the number of diversity branches increases.

Notation: We denote random vectors and random scalars by upper-case boldface letters

such as X and upper-case standard letters, such as X , respectively. Their realizations are

indicated by lower-case letters of the same font. We use upper-case letters of two special fonts

to denote deterministic matrices (e.g., Y). To avoid ambiguities, we use another font, such as

R for rate, to denote constants that are typically capitalized in the literature. The circularly-

symmetric Gaussian distribution is denoted by CN (µ, σ2), where µ and σ2 denote the mean

and the variance respectively. The superscripts (·)T and (·)H denote transposition and Hermitian

transposition respectively. We write log(·) to denote the natural logarithm, ∥·∥ stands for the ℓ2-

norm, P[·] for the probability of an event, E[·] for the expectation operator, ∗ for the convolution

operation, 1(·) for the indicator function, and Q(·) for the Gaussian Q-function.

Organization of the paper: In Section II, we present our system model. In Section III, we

present a finite-blocklength achievability bound on the error probability. We then introduce the

saddlepoint approximation to efficiently evaluate this bound in the URLLC regime with imperfect

synchronization. In Section IV, we provide an example on how saddlepoint approximation can

be applied when BPSK constellation is used. In Section V, we discuss the accuracy of the

saddlepoint approximation and the impact of the imperfect synchronization with the help of

numerical examples. Concluding remarks are provided in Section VI.

II. SYSTEM MODEL

A. Overview

We consider pilot-assisted transmission of a uniformly distributed message over a single-input

single-output (SISO) block-flat-fading channel with unknown delay. The setup is illustrated by
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the block diagram in Fig. 1. The encoder maps the realization of the message W to a complex-

valued codeword, which in turn is split into the subcodewords as

x
(d)
ℓ =

[
x
(d)
0,ℓ · · · x

(d)
ns−1,ℓ

]T
∈ Cns , ℓ = 0, . . . , nb − 1 (1)

where nb is the number of fading blocks used for transmission of the message. The subcodewords

are prepended by the pilot sequence

x(p) =
[
x
(p)
0 · · · x

(p)
np−1

]T
∈ Cnp (2)

to form nb subpackets which are transmitted over different channel fading blocks. Hence, the ℓth

subpacket, which consists of nc = np+ns pilot and data symbols, sees a flat-fading channel with

complex channel gain Hℓ, where H0, . . . , Nnb−1 are i.i.d.. However, all subpackets experience

the same propagation delay D, a fact which will be used in the synchronization algorithm1. We

assume that the transmitter and receiver are coarsely synchronized and model D as uniformly

distributed over [0, dmax], where dmax is a known constant.

We assume that the data and pilot symbols are subject to the same power constraint

E[∥X(d)
ℓ ∥2] = nsρ and ∥x(p)∥2 = npρ. As is clear from (1) and (2), the packet consists of nbnc

complex pilot and data symbols, and the codebook therefore contains ⌈exp(nbncR)⌉ codewords,

where R is the rate in nats per complex symbol.

The receiver use knowledge of the pilot sequence to estimate the common channel delay and

the individual fading block gains. The receiver picks the codeword in the codebook that, after

being delayed and scaled with the delay and channel gain estimates, is at minimum Euclidean

distance to received vector. If the synchronization and channel estimation is error-free, this would

correspond to ML decoding (which minimizes the packet error probability when the message is

uniformly distributed). We finally define the packet error probability as

ϵpep = P
(
W ̸= Ŵ

)
. (3)

where Ŵ is the decoded message.

In the following subsections, we will define the pulse shaping and receiver processing

considered in this paper.

1This model covers, e.g., the case when we transmit the subpackets in parallel over sufficiently spaced subcarriers.
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D̂ Ĥnb−1CE

⋮

W
Ŵ
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Fig. 1: Block diagram of the system model.

B. Modulation and Waveform Channel

The continuous-time pilot signal, which is the same for all fading blocks, is formed as

x(p)(t) =

np−1∑

k=0

x
(p)
k stp(t− ktp) (4)

where sτ (t) is a unit-energy square pulse with duration τ defined as

sτ (t) =




1/
√
τ , t ∈ [0, τ)

0, otherwise
. (5)

The ℓth fading block data signal is

x
(d)
ℓ (t) =

ns−1∑

k=0

x
(d)
k,ℓstp(t− ktp − nptp) (6)

and the ℓth subpacket signal is x(p)(t) + x
(d)
ℓ (t). Hence, the data symbols follows immediately

after the pilot symbols.

The received signal due to the ℓth subpacket is

Yℓ(t) = Hℓ

(
x(p)(t−D) + x

(d)
ℓ (t−D)

)
+ Zℓ(t) (7)

where Hℓ is the complex channel gain, D is the channel delay, and Z0(t), . . . , Znb−1(t) are

independent white complex Gaussian processes with power spectral density N0. For convenience,

we set N0 = 1, and we can therefore interpret ρ as the SNR per pilot or data symbol.
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C. Synchronization and Channel Estimation

The first step in the receiver is to estimate the delay and channel gains. The synchronization

and channel estimation algorithm makes use of an upsampled version of the received signal. We

see from (4) and (5) that we can write the pilot signal as

x(p)(t) =

Nnp−1∑

n=0

x
(p)
⌊n/N⌋

√
ts

tp
sts(t− nts) =

Nnp−1∑

n=0

x
(p)
N,nsts(t− nts) (8)

where the integer N ≥ 1 is the upsampling factor, ts = tp/N, and

x
(p)
N,n =





1√
N
x
(p)
⌊n/N⌋, n = 0, 1, . . . ,Nnp − 1

0, otherwise

is a scaled and upsampled version of the pilot sequence. We can, of course, recover x
(p)
N,n from

x(p)(t) by sampling the output of a causal filter with impulse response sts(t) and input x(p)(t).

Indeed, the filter output is

(x(p) ∗ sts)(t) =

Nnp−1∑

n=0

x
(p)
N,nrts(t− nts) (9)

where rts(t) is a triangular pulse with duration 2ts and unit peak value,

rts(t) = (sts ∗ sts)(t) =





t/ts, 0 ≤ t < ts

1− t/ts, ts ≤ t ≤ 2ts

0, otherwise

. (10)

Clearly, x(p)
N,m = (x(p) ∗ sts)((m+ 1)ts). However, for a sampling offset e ∈ [0, ts), we have that

(x(p) ∗ sts)((m+ 1)ts + e) =

(
1− e

ts

)
x
(p)
N,m +

e

ts
x
(p)
N,m+1 (11)

which will be used later.

To capture the entire pilot signal from the received signal due to the ℓth subpacket, we take

M samples of the matched filter output

Y
(p)
m,ℓ = (Yℓ ∗ sts) ((m+ 1)ts) , m = 0, . . . ,M− 1 (12)

where

M =
⌈dmax

ts

⌉
+ npN (13)
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is sufficiently large, since the delay D ∈ [0, dmax]. We form the received vector (for the purpose

of synchronization and channel estimation) as Y
(p)
ℓ = [Y0,ℓ, . . . , Y

(p)
M−1,ℓ]

T ∈ CM. If we let D =

Qts + E, where Q ∈ Z and E ∈ [0, ts), then from (11) and (12) we can write

Y
(p)
ℓ = v(Q,E)Hℓ +Cℓ +Zℓ (14)

where

v(q, e) =
[
x
(p)
N (q) x

(p)
N (q + 1)

]

1−

e
ts

e
ts


 (15)

x
(p)
N (q) =

[
0T
q x

(p)
N,0 · · · x

(p)
N,Nnp−1 0T

M−q−Nnp

]T
(16)

Zℓ ∼ CN (0, IM) is the noise vector due to Zℓ(t), and Cℓ accounts for the interference due to

the data signal x(d)
ℓ (t).

In this paper, we choose to estimate the channel gains Ĥ = [Ĥ0, . . . , Ĥnb−1]
T and delay

D̂ = Q̂ts + Ê as

[Ĥ , Q̂, Ê] = arg min
h̄,q̄,ē

nb−1∑

ℓ=0

∥Y (p)
ℓ − v(q̄, ē)h̄ℓ∥2. (17)

Hence, we see that (17) is a least squares estimator which coincides with the ML estimator of

H and D if we can ignore the influence of Cℓ. However, even for the case when Cℓ ̸= 0, the

numerical results presented below indicate that the mean square error of the estimator in (17)

approaches the Cramér-Rao bound as the SNR increases. Hence, the estimator appears to be

asymptotically efficient (just as we expect the ML estimator to be).

We note that the ℓth element of h̄ = [h̄0, . . . , h̄nb−1]
T affects only the ℓth term in the objective

function in (17). Hence, we can minimize the sum in (17) with respect to h̄ by considering

each element in h̄ separately. Given the observation Y
(p)
ℓ = y

(p)
ℓ , the h̄ℓ that minimizes the cost

function in (17) can be written as a function of q̄ and ē:

ĥℓ(q̄, ē) = arg min
h̄ℓ

nb−1∑

k=0

∥y(p)
k − v(q̄, ē)h̄k∥2 (18)

= arg min
h̄ℓ

∥y(p)
ℓ − v(q̄, ē)h̄ℓ∥2 (19)

=
v(q̄, ē)Hy

(p)
ℓ

||v(q̄, ē)||2 . (20)
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Hence, we can estimate the delay parameters as

[q̂, ê] = arg min
q̄,ē

nb−1∑

ℓ=0

∥y(p)
ℓ − v(q̄, ē)ĥℓ(q̄, ē)∥2 (21)

= arg min
q̄,ē

nb−1∑

ℓ=0

∥y(p)
ℓ ∥2 − 2Re{(y(p)

ℓ )Hv(q̄, ē)ĥℓ(q̄, ē)}+ ∥v(q̄, ē)∥2|ĥℓ(q̄, ē)|2 (22)

= arg min
q̄,ē

nb−1∑

ℓ=0

−2Re
{
|v(q̄, ē)Hy(p)

ℓ |2
∥v(q̄, ē)∥2

}
+
|v(q̄, ē)Hy(p)

ℓ |2
∥v(q̄, ē)∥2 (23)

= arg max
q̄,ē

nb−1∑

ℓ=0

|v(q̄, ē)Hy(p)
ℓ |2

∥v(q̄, ē)∥2 (24)

= arg max
q̄,ē

a(q̄, ē)

b(q̄, ē)
(25)

where

a(q̄, ē) =

nb−1∑

ℓ=0

|v(q̄, ē)Hy(p)
ℓ |2, (26)

b(q̄, ē) = ∥v(q̄, ē)∥2. (27)

For a fixed q̄ both a(q̄, ē) and b(q̄, ē) are second-degree polynomials in ē. We find the extreme

points of a(q̄, ē)/b(q̄, ē), for a fixed q̄, by differentiating with respect to ē and finding the roots,

i.e., the solutions to

∂

∂ē

a(q̄, ē)

b(q̄, ē)
=

b(q̄, ē)a′(q̄, ē)− a(q̄, ē)b′(q̄, ē)

b(q̄, ē)2

∣∣∣∣
ē=ē∗

= 0 (28)

We note that the roots are easily found, since the numerator of (28) is polynomial with degree 3

(or less) in ē. If (28) has a solution ē∗ in the range (0, ts), then (q̄, ē∗) is a candidate for (q̂, ê).

We also consider the boundary points (q̄, 0) and (q̄, ts) as candidates, since they might be the

solution of (25) in the case when no extreme point ē∗ can be found in (0, ts) or when the extreme

points are minima points (instead of maxima). In passing, we also note that a(q̄, ē)/b(q̄, ē) is

not necessarily differentiable at ē = 0, but this will not be a problem for the algorithm. Finally,

we find (q̂, ê) as the best element in D.

We are now ready to summarize the delay and channel estimation algorithm. Let D be the

set of candidates for (q̂, ê). We initialize D as D = {(q̄, 0) : q̄ = 0, 1, . . . , ⌈dmax/ts⌉}. Next,

we find the solutions ē∗ to (28) for each q̄ ∈ {0, 1, . . . , ⌈dmax/ts⌉}. If a solution ē∗ is in the

range [0, ts), then we add (q̄, ē∗) to D. We then find (q̂, ê) as the entry in D that maximizes the
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Algorithm 1 Synchronization and Channel Estimation

Require: ts, dmax, y(p)
0 ,y

(p)
1 , . . . ,y

(p)
nb−1

Ensure: A solution q̂, ê, ĥ0, ĥ1, . . . , ĥnb−1 to (17)

D ← {(q, 0) : q = 0, 1, . . . , ⌈dmax/ts⌉}
for q̄ ∈ {0, 1, . . . , ⌈dmax/ts⌉} do

for each root ē∗ to (28) such that ē∗ ∈ (0, ts) do

add (q̄, ē∗) to D
end for

end for

(q̂, ê)← element in D that maximizes the objective function in (25)

for ℓ = 0, 1, . . . , nb − 1 do

ĥℓ ← v(q̂, ê)Hy
(p)
ℓ /||v(q̂, ê)||2

end for

objective function in (25). Finally, we use (q̂, ê) to compute ĥ0, ĥ1, . . . , ĥnb−1 according to (20).

Pseudocode for the algorithm is given in Algorithm 1.

To validate our algorithm, we computed the Cramer-Rao bound (CRB) and compared it with

Monte Carlo simulation results for different D = d and H = h. In all our simulations, both

the channel and delay estimation mean squared errors approach the CRBs as ρ increases. An

example of one such simulation is found in Fig. 2. The details of CRB evaluation can be found

in the Appendix A.

D. Codeword Decoding Phase

The codeword decoding phase makes use of the estimated delay and channel gain from the

previous phase to decode the transmitted data symbols. The input-output relationship for the kth

symbol in the lth block, assuming that the synchronization is not off by more than one symbol

(i.e., |D̂ −D| ≤ tp) is

Yk,ℓ =
(
Yℓ ∗ s̃tp

)
(t)|t=ktp+nptp+D̂ (29)

= Hℓ((1−∆)xk+Λ,ℓ +∆xk,ℓ) + Zk,ℓ, (30)

DRAFT



11

6 8 10 12 14 16 18 20 22 24 26 28 30
10−6

10−5

10−4

10−3

SNR

E
[ ∣ ∣ ∣
D̂
−
d
∣ ∣ ∣2
]

simulation results
Cramer-Rao bound

(a) Synchronization error
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(b) Channel estimation error

Fig. 2: Comparison of mean square error and CRB of the estimators for N = 20, nb = 1, dmax = 20, cℓ = 0, d = 8.34,

h = 0.835− 0.536i.

where s̃tp(t) = stp(−t+ tp), ∆ = 1− (D − D̂)/tp, Λ = sign(D̂ −D).2

In the decoding process, the receiver tries to find the codeword in the codebook closest to the

received signal after scaling each part of the codeword corresponding to a different fading block

by the available channel estimate. Mathematically, given the received vector and the channel

estimates, the decoded codeword x̂ = [x̂T
0 , . . . , x̂

T
nb−1]

T is determined as follows:

x̂ = arg min
x̄=[x̄T

0 ,...,x̄T
nb−1]

T∈C

nb−1∑

ℓ=0

∥yℓ − ĥℓx̄l∥2. (31)

where yℓ = [y0,ℓ, . . . , yns−1,ℓ]
T and C is the codebook. This decoder, known as the mismatched

SNN decoder, coincides with the ML decoder only when the receiver has perfect channel state

information, i.e., ĥℓ = hℓ for ℓ = 0, . . . , nb − 1 and perfect synchronization, i.e. δ = 1.

This decoder, although not optimal, is practically relevant and also yields tractable analysis

of information-theoretic bounds [13].

III. A NON-ASYMPTOTIC UPPER BOUND ON THE ERROR PROBABILITY

We may evaluate the error probability as

ϵpep = P
(∣∣∣D̂ −D

∣∣∣ ≤ tp

)
ϵ1 + P

(∣∣∣D̂ −D
∣∣∣ > tp

)
ϵ2 (32)

where ϵ1 and ϵ2 are the probability of erroneous packet decoding when the synchronization is off

by less than and more than one symbol respectively. When the synchronization is off more than

2We have omitted the superscript (.)(d) for the rest of the paper to keep the notation simple.
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one symbol, there is a minuscule probability of successful decoding since our decoder operates

under the assumption of perfect synchronization, By assuming the decoder cannot decode the

packet when synchronization is off more than one symbol, i.e. ϵ2 = 1, we may bound the error

probability as

ϵpep ≤ P
(∣∣∣D̂ −D

∣∣∣ ≤ tp

)
ϵ1 + P

(∣∣∣D̂ −D
∣∣∣ > tp

)
(33)

In the next section, we will present the RCUs bound for ϵ1 and its corresponding saddlepoint

approximation.

A. The RCUs Finite-Blocklength Bound

Like most of the achievability results in information theory, the RCUs bound which we will

focus on in this paper is obtained by a random-coding argument. This means that instead of

analyzing the performance of a particular code, we evaluate the average error probability averaged

over a randomly constructed ensemble of codebooks. In this paper, we consider an i.i.d. discrete

ensemble in which each symbol of every codeword is drawn independently (and uniformly) from

a constellation set with u elements (e.g. for BPSK, u = 2) and power ρ. Note that for σ2
ℓ = 1, ρ

determines the SNR of the transmission. Although suboptimal, this choice of the random code

leads to tractable expressions once we introduce the asymptotic expansion of the RCUs bound.

For our setup, the RCUs achievability bound ϵub on ϵ1 is given by

ϵ1 ≤ ϵub = P

[
logU

ncnb
+

1

ncnb

nb−1∑

ℓ=0

ns−1∑

k=0

ıs(Xk,ℓ;Yk,ℓ, Ĥℓ) ≤ R

]
(34)

where U is a random variable that uniformly distributed on [0, 1] and independent of all other

quantities, and ıs(x, y, ĥ) is the so-called generalized information density which is defined as

[12]

ıs(x; y, ĥ) = log
e−s|y−ĥx|2

EX̄

[
e−s|y−ĥX̄|2] , (35)

where X̄ is independent and has the same distribution as X and s > 0 is an optimization

parameter that can be used to obtain a tighter bound.

There is no closed-form expression for the RCUs bound (34), in general. Therefore, we need

to evaluate it using numerical methods, such as Monte-Carlo simulations. Unfortunately, such an

evaluation can be extremely time consuming due to the low target error probabilities of interest

in URLLC. Next, we introduce an asymptotic expansion and a saddlepoint approximation of

(34) to compute it efficiently.
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B. The Saddlepoint Approximation for Markov Chains

We first note that the RCUs bound in (34) can also be stated in the conditional form as

ϵub = EH,Ĥ,∆

[
ϵub

(
H , Ĥ ,∆

)]
(36)

where

ϵub

(
h, ĥ,∆

)
= P

[
logU

ncnb
+

1

ncnb

nb∑

ℓ=1

ns∑

k=1

ıs

(
Xk,ℓ;Yk,ℓ, ĥℓ

)
≤ R

∣∣H = h, Ĥ = ĥ,∆ = δ

]
(37)

H = [H0, . . . , Hnb−1]
T , and U is a random variable uniformly distributed over [0,1]. Here, given

h, ĥ and δ, Xk,ℓ are conditionally i.i.d. in k, yet the same cannot be said for Yk,ℓ. As a result,

ıs

(
Xk,ℓ;Yk,ℓ, ĥℓ

)
is also dependent in k. This is due to the imperfect synchronization as shown

in (30). Note that given ∆ = δ, all random quantities in (37) are conditionally independent in ℓ.

When analyzing the error probability, we assume that the interference due to the imperfect

synchronization is always caused by the previous symbol, or equivalently D̂ ≤ D and Λ = −1
for simplicity.

Let bk,ℓ be the enumeration of a state with two elements [xk−1,ℓ, xk,ℓ]. Then,

P(Bk,ℓ |Bk−1,ℓ, . . . , B0,ℓ) = P(Bk,ℓ |Xk−1,ℓ, Xk−2,ℓ) (38)

= P(Bk,ℓ |Bk−1,ℓ), (39)

which proves that Bk,ℓ forms a Markov chain. Note that ıs(Xk,ℓ;Yk,ℓ, ĥℓ) in (37) can be expressed

as a function of Bk,l and Zk,ℓ. Also note that for our setup, the variable yk,ℓ given in (30) depends

on both xk,ℓ and xk−1,ℓ which means that yk,ℓ depends on both Bk,ℓ and Bk−1,ℓ, and it does not

depend on Bk−i,ℓ for k ≥ i ≥ 2.

Let φℓ(ζ) and κℓ(ζ) be moment-generating and cumulant-generating functions of
∑ns

k=1−ıs
(
Xk,ℓ;Yk,ℓ, ĥℓ

)
respectively; then

φℓ(ζ) = E
[
e−ζ

∑ns
k=1 ıs(Xk,ℓ;Yk,ℓ,ĥℓ)

]
(40)

and κℓ(ζ) = log(φℓ(ζ)). We also let

µℓ(ζ) =
1

ns

∂κℓ(ζ)

∂ζ
(41)

and

σ2
ℓ (ζ) =

1

ns

∂2κℓ(ζ)

∂ζ2
. (42)
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Indeed, for ζ = 0, µℓ(0) and σ2
ℓ (0) correspond to the mean and variance of

∑ns
k=1−ıs

(
Xk,ℓ;Yk,ℓ, ĥℓ

)
respectively. We also let µ(ζ) =

∑nb−1
ℓ=0 µℓ(ζ), and σ2(ζ) =

∑nb−1
ℓ=0 σ2

ℓ (ζ) which correspond to the mean and the variance of
∑ns−1

k=0

∑nb−1
ℓ=0 −ıs

(
Xk,ℓ;Yk,ℓ, ĥℓ

)

for ζ = 0 respectively.

Before we introduce the saddlepoint approximation for (37), we first introduce the saddlepoint

approximation for the sum of a function of dependent random variables as (see [11, Ch-6] for

details): Assume for ζ ≤ ζ ≤ ζ , κℓ(ζ) and its first two derivatives exist for every ℓ. If there

exists a ζ ≤ ζ ≤ ζ satisfying −µ(ζ)ns/(ncnb) = R, then for ζ ∈ [0, ζ]

P

[
1

ncnb

ns−1∑

k=0

nb−1∑

ℓ=0

ıs

(
Xk,ℓ;Yk,ℓ, ĥℓ

)
≤ R

]
≈ eκ(ζ)−nsζµ(ζ)

[
e

β2ζ
2 Q(βζ)

]
(43)

where βu = u
√

nsσ2(ζ) and κ(ζ) =
∑nb−1

ℓ=0 κℓ(ζ). For ζ ∈ [ζ, 0]

P

[
1

ncnb

nb−1∑

ℓ=0

ns−1∑

k=0

ıs

(
Xk,ℓ;Yk,ℓ, ĥℓ

)
≤ R

]
≈ 1− eκ(ζ)−nsζµ(ζ)

[
e

β2ζ
2 Q(β−ζ)

]
. (44)

Here, compared to (37), we are missing a logU term inside the probability on the left hand side

of (43) and (44). How saddlepoint approximation should be updated to regarding for the logU

term is explained in [21, App. B] (also see [26, App. E]). Note that both in [21] and [26], authors

consider the tail of the sum of independent random variables. However, their methods can be

applied to the sum of dependent random variables as well. Thus, by following the same steps

from [21, App. B] in our setup, we obtain the saddlepoint approximation of (37) as follows:

Assume for ζ ≤ ζ ≤ ζ , κℓ(ζ) and its first two derivatives exist for every ℓ and let there be a

ζ in ζ < ζ < ζ satisfying −µ(ζ)ns/(ncnb) = R. If ζ ∈ [0, 1] then

ϵub

(
h, ĥ, δ

)
≈ eκ(ζ)−nsζµ(ζ)

[
e

β2ζ
2 Q(βζ) + e

β21−ζ
2 Q(β1−ζ)

]
. (45)

If ζ > 1, then

ϵub

(
h, ĥ, δ

)
≈ eκ(1)−nsµ(ζ)

[
Ψ̃ns(1, 1) + Ψ̃ns(0,−1)

]
(46)

where

Ψ̃ns(α1, α2) = eα1[−nsµ(1)−nsR+
nsσ(1)

2 ]Q

(
α1

√
nsσ(1)− α2

nsµ(1) + nsR√
nsσ(1)

)
. (47)

If ζ < 0, then

ϵub(h, ĥ, δ) ≈ 1− eκ(ζ)−nsζµ(ζ)

[
e

β2−ζ
2 Q(β−ζ)− e

β21−ζ
2 Q(β1−ζ) +O

(
1√
ns

)]
. (48)
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Algorithm 2 Saddlepoint Approximation
1: Input : ρ,R, ns, np, nb,NMC

2: Output : ϵsp

3: Draw (hi, ĥi, δi) for i = 1, . . . ,NMC

4: for every (hi, ĥi, δi) do

5: Solve R = −κ′(ζ)ns
ncnb

for ζ , denote solution by ζ∗

6: Compute κ(ζ∗), κ′′(ζ∗)

7: Compute ϵsp(hi, ĥi, δi)

8: end for

9: ϵsp = 1
NMC

∑NMC

i=1 ϵsp(hi, ĥi, δi)

Pseudo-code for the saddlepoint approximation is given in Algorithm 2. The saddlepoint

approximation requires the existence of the MGF φ(ζ) and its derivatives. Due to the dependent

random variables we are dealing with in our model, the MGF and its derivatives cannot be

factorized, which is one of the main challenges here compared to the i.i.d. case. To tackle with

this problem, we next take advantage of the Markovian structure of our setup and provide a

practical method to evaluate the MGF.

C. MGF of the Sum of Information Densities

For the purpose of the derivations in this section, we assume that X−1,ℓ takes a value from

the constellation. If the pilot symbols are selected from the same constellation, X−1,ℓ would take

a value from our constellation since the pilot transmission phase always takes place before the

data transmission. Even when this is not the case, it should be assumed that it takes a value

from the constellation, as it is crucial for the following derivations.

Let bk,ℓ = i is equivalent to having xk−1,ℓ = i1 xk,ℓ = i2 and let Pℓ be the u2 × u2 transition

probability matrix for the Markov chain with entries {pij,ℓ} as

pij,ℓ = P(Bk+1,ℓ = j | Bk,ℓ = i) (49)

= P(Xk+1,ℓ = j2, Xk,ℓ = j1 | Xk,ℓ = i2, Xk−1,ℓ = i1) (50)

= P(Xk+1,ℓ = j2, Xk,ℓ = j1 | Xk,ℓ = i2) (51)

= P(Xk+1,ℓ = j2)1(j1 = i2) (52)
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and ν = [ν0, . . . , νu2−1]
T be the probability distribution of the initial state. Furthermore, we let

φj,ℓ(ζ) = EZ

[
e−ζıs(Xk,ℓ,Yk,ℓ,ĥℓ)

∣∣∣ Bk,ℓ = j
]

(53)

= EZ

[
e−ζıs(Xk,ℓ,Yk,ℓ,ĥℓ)

∣∣∣ Xk,ℓ = j2, Xk−1,ℓ = j1

]
(54)

Pℓ(ζ) be a u2 × u2 matrix with entries {pij,ℓφj,ℓ(ζ)}, and

νℓ(ζ) = [ν0φ0,ℓ(ζ), . . . , νu2−1φu2−1,ℓ(ζ)]
T . (55)

For our case, it is straightforward to show that Markov chain is irreducible and aperiodic, since

p
(n)
ij,ℓ > 0, where p

(n)
ij,ℓ are the elements of Pn

ℓ for n > 0. Using these definitions, the moment

generating function of
∑ns−1

k=0 ıs

(
Xk,ℓ;Yk,ℓ, ĥℓ

)
can be found as

φℓ(ζ) = E
[
eζ

∑ns−1
k=0 ıs(Xk,ℓ;Yk,ℓ,ĥℓ)

]
(56)

= E
[
eζıs(X0,ℓ;Y0,ℓ,ĥℓ)eζ

∑ns−1
k=1 ıs(Xk,ℓ;Yk,ℓ,ĥℓ)

]
(57)

= E
[
E
[
eζıs(X0,ℓ;Y0,ℓ,ĥℓ)eζ

∑ns−1
k=1 ıs(Xk,ℓ;Yk,ℓ,ĥℓ)

∣∣∣ B0,ℓ = i, Bns−1,ℓ = j
]]

(58)

= E
[
E
[
eζıs(X0,ℓ;Y0,ℓ,ĥℓ)

∣∣∣ B0,ℓ = i
]]

× E
[
E
[
eζ

∑ns−1
k=1 ıs(Xk,ℓ;Yk,ℓ,ĥℓ)

∣∣∣ B0,ℓ = i, Bns−1,ℓ = j
]]

(59)

=
u2−1∑

i=0

E
[
eζıs(X0,ℓ;Y0,ℓ,ĥℓ)

∣∣∣ B0,ℓ = i
]
νi

×
u2−1∑

i=0

u2−1∑

j=0

E
[
eζ

∑ns−1
k=1 ıs(Xk,ℓ;Yk,ℓ,ĥℓ)

∣∣∣ B0,ℓ = i, Bns−1,ℓ = j
]
p
(ns−1)
ij,ℓ (60)

=
u2−1∑

i=0

φi,ℓ(ζ)νi

u2−1∑

j=0

(
p(ζ)(ns−1)

)
ij,ℓ

(61)

= (νℓ(ζ))
T Pℓ(ζ)

ns−1eu2 (62)

where p
(ns−1)
ij,ℓ and

(
p(ζ)(ns−1)

)
ij,ℓ

are the ijth entries of matrices Pns−1
ℓ and Pℓ(ζ)

ns−1 respectively,

eu2 is column ones vector with length u2, (59) follows since given B0,ℓ, eζıs(X0,ℓ;Y0,ℓ,ĥℓ) is

conditionally independent of eζ
∑ns−1

k=1 ıs(Xk,ℓ;Yk,ℓ,ĥℓ), and (61) follows from [11, Lemma 9.1.2]

(
p(ζ)(ns−1)

)
ij,ℓ

= E
[
eζ

∑ns−1
k=1 ıs(Xk,ℓ;Yk,ℓ,ĥℓ)

∣∣∣ B0,ℓ = i, Bns−1,ℓ = j
]
p
(ns−1)
ij,ℓ . (63)

With this, we now have an efficient way of evaluating φℓ(ζ), and as a result, we can evaluate

κ(ζ) and its first two derivatives efficiently.
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bk,ℓ xk−1,ℓ xk,ℓ

0 x(1) x(1)

1 x(1) x(2)

2 x(2) x(1)

3 x(2) x(2)

TABLE I: The states for the Markov chain bk,ℓ.

IV. EXAMPLE: BPSK CONSTELLATION

In this section, we show how the saddlepoint approximation of the RCUs bound for the

introduced system model can be efficiently evaluated when the data points xk,ℓ are selected from

a BPSK constellation. We assume the constellation points are x(1) = −√ρ and x(2) =
√
ρ, and

as a result u = 2. Without loss of generality, we defined the states for the Markov chain bk,ℓ as

in Table I.

We next show that φ0(ζ) = φ3(ζ) as

φ0,ℓ(ζ) = EZ

[
eζs|Yk,ℓ−ĥℓx

(1)|2
(
1

2

(
e−s|Yℓ−ĥℓx

(1)|2 + e−s|Yℓ−ĥℓx
(2)|2)

)ζ

∣∣∣∣Xk,ℓ = x(1), Xk−1,ℓ = x(1)

]
(64)

=
1

2ζ

∫
eζs|x(1)(hℓ−ĥℓ)+Z|2(e−s|x(1)(hℓ−ĥℓ)+Z|2 + e−s|x(1)(hℓ+ĥℓ)+Z|2)ζ dF (z) (65)

=
1

2ζ

∫
eζs|−x(2)(hℓ−ĥℓ)−Z̃|2(e−s|−x(2)(hℓ−ĥℓ)−Z̃|2 + e−s|−x(2)(hℓ+ĥℓ)−Z̃|2)ζ dF (z) (66)

=
1

2ζ

∫
eζs|x(2)(hℓ−ĥℓ)+Z̃|2(e−s|x(2)(hℓ−ĥℓ)+Z̃|2 + e−s|x(2)(hℓ+ĥℓ)+Z̃|2)ζ dF (z) (67)

=
1

2ζ

∫
eζs|x(2)(hℓ−ĥℓ)+Z̃|2(e−s|x(2)(hℓ−ĥℓ)+Z̃|2 + e−s|x(2)(hℓ+ĥℓ)+Z̃|2)ζ dF (z̃) (68)

=
1

2ζ

∫
eζs|x(2)(hℓ−ĥℓ)+Z̃|2(e−s|x(2)(hℓ−ĥℓ)+Z̃|2 + e−s|x(2)(hℓ+ĥℓ)+Z̃|2)ζ dF (z) (69)

= EZ

[
eζs|x(2)(hℓ−ĥℓ)+Z|2 1

2ζ

(
e−s|x(2)(hℓ−ĥℓ)+Z|2 + e−s|x(2)(hℓ+ĥℓ)+Z|2)ζ

∣∣∣∣Xk,ℓ = x(2), Xk−1,ℓ = x(2)

]
(70)

= φ3,ℓ(ζ) (71)
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where Z ∼ CN (0, 1), Z̃ = −Z, F (z) is the CDF of Z and F (z̃) is the CDF of Z̃, which by

the definition of CDF F (z̃) = F (z). By following same steps, we can also show that φ1,ℓ(ζ) =

φ2,ℓ(ζ) as

φ1,ℓ(ζ) = EZ

[
eζs|Yk,ℓ−ĥℓx

(2)|2
(
1

2

(
e−s|Yk,ℓ−ĥℓx

(1)|2 + e−s|Yk,ℓ−ĥℓx
(2)|2)

)ζ

∣∣∣∣Xk−1,ℓ = x(1), Xk,ℓ = x(2)

]
(72)

=
1

2ζ

∫
eζs|x̄ℓ−x(2)ĥℓ+Z|2(e−s|x̄ℓ−ĥℓx

(1)+Z|2 + e−s|x̄ℓ−ĥℓx
(2)+Z|2)ζ dF (z) (73)

=
1

2ζ

∫
eζs|−x̄ℓ+x(2)ĥℓ−Z|2(e−s|−x̄ℓ+ĥℓx

(1)−Z|2 + e−s|x̄ℓ+ĥℓx
(2)−Z2|)ζ dF (z) (74)

=
1

2ζ

∫
eζs|−x̄ℓ−x(1)ĥℓ+Z̃|2(e−s|−x̄ℓ−ĥℓx

(2)+Z̃|2 + e−s|−x̄ℓ−ĥℓx
(2)+Z̃|2)ζ dF (z̃) (75)

= EZ

[
eζs|Yk,ℓ−ĥℓx

(1)+Z|2
(
1

2

(
e−s|Yk,ℓ−ĥℓx

(1)+Z|2 + e−s|Yk,ℓ−ĥℓx
(2)+Z|2)

)ζ

∣∣∣∣Xk−1,ℓ = x(2), Xk,ℓ = x(1)

]
(76)

= φ2,ℓ(ζ) (77)

where

x̄ℓ = hℓ

(
(1− δ)x(1) + δx(2)

)
(78)

and (76) follows from

−x̄ℓ = hℓ

(
(1− δ)x(2) + δx(1)

)
. (79)

Assuming pij,ℓ = 1/2 for all i, j and ℓ, and νi = 1/4 for all i, νℓ(ζ) and Pℓ(ζ) are given by

νℓ(ζ) =
[
φ0,ℓ(ζ)

4

φ1,ℓ(ζ)

4

φ1,ℓ(ζ)

4

φ0,ℓ(ζ)

4

]T
(80)

Pℓ(ζ) =




φ0,ℓ(ζ)

2

φ1,ℓ(ζ)

2
0 0

0 0
φ1,ℓ(ζ)

2

φ0,ℓ(ζ)

2

φ0,ℓ(ζ)

2

φ1,ℓ(ζ)

2
0 0

0 0
φ1,ℓ(ζ)

2

φ0,ℓ(ζ)

2



. (81)

Note that one of the required quantities for saddlepoint approximation is the cumulant κℓ(ζ)

which requires the evaluation of Pℓ(ζ)
ns . Considering the specific structure of Pℓ(ζ), its
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eigenvalue decomposition can be computed straightforwardly. This decomposition can then be

employed for the efficient evaluation of Pℓ(ζ)
ns as we show next.

Let Vℓ be the matrix whose ith column is the eigenvector vi of Pℓ(ζ), and Λℓ be the diagonal

matrix whose diagonal elements are the corresponding eigenvalues. Then Pℓ(ζ)
ns = VℓΛ

ns
ℓ V

−1
ℓ

with

Λns
ℓ =

1

2ns




0 0 0 0

0 0 0 0

0 0 (φ0,ℓ(ζ)− φ1,ℓ(ζ))
ns 0

0 0 0 (φ0,ℓ(ζ) + φ1,ℓ(ζ))
ns




(82)

Vℓ =




0 −φ1,ℓ(ζ)

φ0,ℓ(ζ)
−1 1

0 1 1 1

−φ0,ℓ(ζ)

φ1,ℓ(ζ)
0 −1 1

1 0 1 1



. (83)

After simple mathematical operations κℓ(ζ) can be found as

κℓ(ζ) = log
(
(νℓ(ζ))

T Pℓ(ζ)
nse4

)
(84)

= log
(
(νℓ(ζ))

T VℓΛ
ns
ℓ V

−1
ℓ e4

)
(85)

= log
(
2−(ns+1)(φ0,ℓ(ζ) + φ1,ℓ(ζ))

ns+1) (86)

To evaluate (44) we need µℓ(ζ) in (41) and σ2
ℓ (ζ) in (42) which are given as

µℓ(ζ) =
1

ns

(1 + ns)φ
′
0,ℓ(ζ) + φ′

1,ℓ(ζ)

φ0,ℓ(ζ) + φ1,ℓ(ζ)
(87)

σ2
ℓ (ζ) =

1

ns

[
−
(1 + ns)

(
φ′
0,ℓ(ζ) + φ′

1,ℓ(ζ)
)2

(φ1,ℓ(ζ) + φ1,ℓ(ζ))
2 +

(1 + ns)φ
′′
0,ℓ(ζ) + φ′′

1,ℓ(ζ)

φ0,ℓ(ζ) + φ1,ℓ(ζ)

]
(88)

where

φ′
j,ℓ(ζ) = EZ

[
1

2ζ
esζ|Yk,ℓ−ĥℓx

(j2)+Z|2(e−s|Yk,ℓ−ĥℓx
(1)+Z|2 + e−s|Yk,ℓ−ĥℓx

(2)+Z|2)ζ
(
− log(2)

+ s
∣∣∣Yk,ℓ − ĥℓx

(j2) + Z
∣∣∣
2

+ log
(
e−s|Yk,ℓ−ĥℓx

(1)+Z|2 + e−s|Yk,ℓ−ĥℓx
(2)+Z|2)

)∣∣∣∣∣Xk−1,ℓ = j1, Xk,ℓ = j2

]

(89)
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and

φ′′
j,ℓ(ζ) = EZ

[
1

2ζ
esζ|Yk,ℓ−ĥℓx

(j2)+Z|2(e−s|Yk,ℓ−ĥℓx
(1)+Z|2 + e−s|Yk,ℓ−ĥℓx

(2)+Z|2)ζ
(
(log(2))2

+ s2
∣∣∣Yk,ℓ − ĥℓx

(j2) + Z
∣∣∣
4

+ 2s
∣∣∣Yk,ℓ − ĥℓx

(j2) + Z
∣∣∣
2
(
− log(2)

+ log
(
e−s|Yk,ℓ−ĥℓx

(1)+Z|2 + e−s|Yk,ℓ−ĥℓx
(2)+Z|2)

)
− 2 log(2) log

(
e−s|Yk,ℓ−ĥℓx

(1)+Z|2 + e−s|Yk,ℓ−ĥℓx
(2)+Z|2)

+ 2 log
(
e−s|Yk,ℓ−ĥℓx

(1)+Z|2 + e−s|Yk,ℓ−ĥℓx
(2)+Z|2)

)∣∣∣∣∣Xk−1,ℓ = j1, Xk,ℓ = j2

]
. (90)

We may evaluate the φj,ℓ(ζ) and its derivatives efficiently using numerical integration methods.

Also the pdf of ıs(x;Yℓ, ĥℓ) for the BPSK case is given in Appendix B which can be used to

further simplify the numerical integration process.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we report numerical experiments to shed a light to the following three questions:

1) How does the upsampling rate N affects the packet error probability?

2) In the URLLC regime, is the introduced saddlepoint approximation sufficiently accurate in

the presence of imperfect synchronization?

3) For a target packet error probability 10−5, how much should we increase the SNR to negate

the impact of imperfect synchronization? How does the number of fading blocks affect this?

To do so we have used a discrete ensemble with BPSK constellation for transmission, and

m-sequences as our pilot sequence. We also consider Rayleigh fading scenario where Hℓ for

ℓ = 0 . . . , nb − 1 generated independently from CN (0, 1) distribution.

In Fig. 3, we report the SNR required to achieve a packet error rate ϵ = 10−5 for R = 0.104

bit per channel use, nb = 8 and nbnc = 288 as a function of upsampling rates N. Here we see

that the improvement as we increased the upsampling rate is significant until N = 5, but after

that, the performance improvement as we increase N is negligible. In this figure, we also present

the results for the case in which pilot symbol sampling is not influenced by the data symbols.

As expected, the difference resulting from this effect is negligible.

In Fig. 4, we report the SNR required to achieve error probability ϵ = 10−5 for nbnc =

288 and R = 0.104 bit per channel used, as a function of the number of fading blocks nb

spanned by each codeword. In this figure, we compared the results for the synchronization

algorithm applied independently to each fading block, the synchronization done jointly in fading
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Fig. 3: Upper bound on the SNR required to achieve ϵpep = 10−5 as a function of N. Here, nbnc = 288, R = 0.104 bit per

channel use and nb = 8; np and s are optimized.

blocks, the case with the perfect synchronization but imperfect channel estimation, and the case

where the synchronization and the channel estimation are both perfect. As expected, performing

independent synchronization over the fading blocks deteriorates the performance greatly as more

than 2.5 dB loss is observed compared to the required SNR with joint synchronization algorithm.

Another interesting observation is that even with the perfect synchronization, the required SNR

to achieve ϵ = 10−5 only differs by 0.6 dB at most compared to the required SNR when joint

synchronization is used for nb > 4. For the case with perfect synchronization and channel

estimation (black curve in Fig. 4), we used the number of pilot symbols np that is optimized

for the cases of perfect synchronization and joint synchronization, respectively. These values

are the same for this set of parameters and the optimized np’s are provided in Table II, for a

fair comparison. We observe that for nb ≥ 12, having perfect channel estimation significantly

decreases the required SNR compared to perfect synchronization case. This is expected as we

increase nb, ns decreases, and as a result, the optimal np decreases. Low np causes deterioration

on channel estimation which has a significant impact on the error probability.

In Fig. 5, we report upper bounds on the packet error probability ϵ as a function of np for

R = 0.104 bit per channel use, nb = 2, ncnb = 288, N = 20 and ρ = 8.45 dB. As in the previous

results, the saddlepoint approximation provide accurate results for a large range of np. This is

of utmost importance because the parameter np may not be optimized specifically to minimize

DRAFT



22

0 2 4 6 8 10 12 14 16 18 20 22 24
−5

0

5

10

15

20

Number of fading blocks nb

SN
R

per block Sync SP approx.
per block Sync RCUs
joint sync SP approx.

joint sync RCUs
perfect sync SP approx.

perfect sync RCUs
perfect sync.&channel RCUs

Fig. 4: Upper bound on the SNR required to achieve ϵpep = 10−5 as a function of nb. Here, nbnc = 288, R = 0.104 bit per

channel use, N = 20; np and s are optimized.

nb Per block Sync np Joint sync np Perfect sync np

2 31 31 31

4 15 15 15

8 15 15 15

12 7 7 7

24 3 3 3

TABLE II: Optimal number of np for the data points in Fig. 4.

the packet error probability in every system. Therefore, the ability to utilize the approximations,

irrespective of the chosen value for np, holds significant relevance.

VI. CONCLUSIONS

We have presented an efficient method to evaluate an upper bound on the error probability

achievable over memoryless block-fading channels, with a pilot assisted-transmission for channel

estimation and synchronization and nearest-neighbor decoding at the receiver. Our method is

based on the saddlepoint approximation which is novel for the case with imperfect synchro-

nization. Our numerical experiments show that the saddlepoint approximation can be safely

used to benchmark practically relevant URLLC systems. We have also observed that, depending

on the, synchronization method, the number of fading blocks and pilot symbols available for
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Fig. 5: Packet error probability as a function of np. Here, ρ = 8.45 dB, nb = 4, nbnc = 288, R = 0.104 bit per channel use,

N = 20; s is optimized.

transmission, the SNR required to achieve packet error probability 10−5 non-negligibly increases.

Therefore, it is advisable to utilize the suggested approximation when assessing error probabilities

in URLLC optimization routines.

APPENDIX A

EVALUATION OF THE CRB OF CHANNEL AND DELAY ESTIMATE

We consider the problem of estimating the parameter vector θ = [ℜ{ĥT},ℑ{ĥT}, ϵ] for the

received vector given in (14). The Fisher information matrix I(θ) under the complex Gaussian

additive noise with zero mean and variance σ2 can be found in [27, Ch. 15.7] as

[I(θ)]mn =
2

σ2
ℜ
{
∂ϕH(θ)

∂θm

∂ϕ(θ)

∂θn

}
, m, n ∈ {0, . . . 2nb}, (91)

where

Y (p) =

[(
Y

(p)
0

)T
, . . . ,

(
Y

(p)
nb−1

)T]T
(92)

ϕ(θ) = E
[
Y (p)

]
(93)

∂ϕ(θ)

∂θi
=





[
0T
Mi, l(q, ϵ)

T ,0T
M(nb−i+1)

]T
, i < nb

[
0T
Mi, jl(q, ϵ)

T ,0T
M(nb−i+1)

]T
, nb ≤ i < 2nb

[
h0γ
ts
, . . . ,

hnb−1γ

ts

]T
, i = 2nb

(94)
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γ = xp,N(q + 1)T − xp,N(q)
T (95)

θm is the mth element of θ, and M is given in (13). Note that this bound only holds over a

deterministic realization of θ, meaning that the expectation in the derivation is taken only over

the distribution of the AWGN Zℓ as seen in (14).

APPENDIX B

PDF OF THE INFORMATION DENSITY

Without the loss of generality, let us assume that the same mapping in Section IV is used.

For bk,ℓ = [i1, i2]
T , Hℓ = hℓ and Ĥℓ = ĥℓ, Let ıs(xℓ;Yℓ, ĥℓ) is shown as a function of the white

Gaussian noise Z as

fi,ℓ(Z) = log


 2e

−s
(
|cℓ(i1,i2)−ĥℓx

(i2)+Z|2
)

e
−s

(
|cℓ(i1,i2)−ĥℓx(1)+Z|2

)
+ e

−s
(
|cℓ(i1,i2)−ĥℓx(2)+Z|2

)

 (96)

where cℓ(i1, i2) = hℓ(δ̃x
(i1) + δx(i2)) and δ̃ = 1− δ. For i = 0 we get

f0,ℓ(Z) = log

(
2

1 + e
−s

(
|hℓ

√
ρ+ĥℓ

√
ρ+Z|2−|hℓ

√
ρ−ĥℓ

√
ρ+Z|2

)
)

(97)

= log

(
2

1 + e−s(|α̃ℓ+Z|2−|δℓ+Z|2)

)
(98)

= log

(
2

1 + es(4
√
ρ(Re{Z}Re{ĥℓ}+Im{Z}Im{ĥℓ})+|α̃ℓ|2−|α|2ℓ)

)
(99)

= log(2)− log
(
1 + es(4

√
ρ(Re{Z}Re{ĥℓ}+Im{Z}Im{ĥℓ})+|α̃ℓ|2−|α|2ℓ)

)
(100)

where αℓ = hℓ
√
ρ− ĥℓ

√
ρ and α̃ℓ = hℓ

√
ρ+ ĥℓ

√
ρ. It is straightforward to show that f3,ℓ(Z) =

f0,ℓ(Z) as well. In other words, whenever the consecutive symbols are matching, they can be

expressed by the same function. We next find f1,ℓ(Z) as

f1,ℓ(Z) = log

(
2

1 + e
−s

(
|hℓ(δ

√
ρ−δ̃

√
ρ)+ĥℓ

√
ρ+Z|2−|hℓ(δ

√
ρ−δ̃

√
ρ)−ĥℓ

√
ρ+Z|2

)
)

(101)

= log

(
2

1 + e
−s

(
|λ̃ℓ+Z|2−|λℓ+Z|2

)
)

(102)

= log

(
2

1 + e
s
(
4
√
ρ(ℜ{Z}ℜ{ĥℓ}+ℑ{Z}ℑ{ĥℓ})+|λ̃ℓ|2−|λℓ|2

)
)

(103)

= log(2)− log

(
1 + e

s
(
4
√
ρ(ℜ{Z}ℜ{ĥℓ}+ℑ{Z}ℑ{ĥℓ})+|λ̃ℓ|2−|λℓ|2

))
(104)

DRAFT



25

where λℓ = hℓ(δ
√
ρ − δ̃

√
ρ) − ĥℓ

√
ρ and λ̃ℓ = hℓ(δ

√
ρ − δ̃

√
ρ) + ĥℓ

√
ρ. As before, f2,ℓ(Z) =

f1,ℓ(Z).

To find the density of (100) and (104), we let Z̃x̃,x ∼ N (|x̃|2− |x|2 , 8ρ|ĥℓ|2). Then f0,ℓ(Z) =

f̃0,ℓ(Z̃δ̃ℓ,δℓ
) with

f̃0,ℓ(Z̃α̃ℓ,αℓ
) = log(2)− log

(
1 + esZ̃α̃ℓ,αℓ

)
(105)

and similarly f1,ℓ(Z) = f̃1,ℓ(Z̃λ̃ℓ,λℓ
) with

f̃1,ℓ(Z̃λ̃ℓ,λℓ
) = log(2)− log

(
1 + e

sZ̃λ̃ℓ,λℓ

)
. (106)

We next find the density using change of variables as follows.

Lemma 1: Let Z ∼ N (µ, σ2), f(z) be an invertible function, h(y) = f−1(z) and the first

derivative of h(y) exists. Then, the pdf of f(Z) can be found as

gf(Z)(y) =
1√
2πσ2

e
−(h(y)−µ)2

2σ2 |h′(y)| (107)

where h′(y) is the first derivative of h(y).

After applying Lemma 1, pdfs of f0,ℓ(Z) and f1,ℓ(Z) can be found as

gf̃0,ℓ(Z̃α̃ℓ,αℓ
)(y) =

1√
16πρ

∣∣ĥℓ

∣∣2
1

s(1− ey−log(2))
e

−
(
− log(e−y+log(2)−1)

s −(|α̃ℓ|2−|αℓ|2)
)2

16ρ|ĥℓ|2 (108)

gf̃1,ℓ(Z̃λ̃ℓ,λℓ
)(y) =

1√
16πρ

∣∣ĥℓ

∣∣2
1

s(1− ey−log(2))
e

−
(
− log(e−y+log(2)−1)

s −(|λ̃ℓ|2−|λℓ|2)
)2

16ρ|ĥℓ|2 (109)

respectively which concludes our proof.
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