Short packets over a massive random-access channel

Giuseppe Durisi

Chalmers, Sweden

LSIT, May, 2023

Joint work with H. K. Ngo, A. Lancho, A. Graell i Amat, P. Popovski, A. Kalør, B. Soretz

Wireless connectivity enables new services

source: IoTpool

Challenges

Collect data from a massive number of low-cost sensors

Communicate reliably critical information

Massive and critical wireless connectivity

massive machine-type comm. (mMTC)

- Uplink mostly
- High energy efficiency
- Great commercial interest
- LPWAN, satellite

ultra-reliable low-latency comm. (URLLC)

- Bidirectional
- Low latency, high reliability
- Limited commercial interest (so far)
- Private 5G network

Some characteristics

$\mathsf{m}\mathsf{MTC}$

- Small information payload (100 bits)
- High user density $(10^7 \text{ devices}/\text{Km}^2)$
- Sporadic TX (less that 1 per minute) $\Rightarrow 120 \text{ dof per user at } B = 20 \text{ MHz}$

URLLC

- Small information payload (100 bits)
- Low latency (100 µs)
- Low error prob. (below 10^{-5})
 - $\Rightarrow 168~{\rm dof}$ per user for $5{\rm G}$

Some characteristics

$\mathsf{m}\mathsf{MTC}$

- Small information payload (100 bits)
- High user density $(10^7 \text{ devices}/\text{Km}^2)$
- Sporadic TX (less that 1 per minute) $\Rightarrow 120 \text{ dof per user at } B = 20 \text{ MHz}$

URLLC

- Small information payload (100 bits)
- Low latency (100 µs)
- Low error prob. (below 10^{-5}) $\Rightarrow 168$ dof per user for 5G

Key design question

How to transmit hundreds of bits in hundreds of dof per user (short-packet regime) under stringent constraints on reliability/latency/energy efficiency?

Some characteristics

$\mathsf{m}\mathsf{MTC}$

- Small information payload (100 bits)
- High user density $(10^7 \text{ devices}/\text{Km}^2)$
- Sporadic TX (less that 1 per minute) $\Rightarrow 120 \text{ dof per user at } B = 20 \text{ MHz}$

URLLC

- Small information payload (100 bits)
- Low latency (100 µs)
- Low error prob. (below 10^{-5}) $\Rightarrow 168$ dof per user for 5G

Key design question

How to transmit hundreds of bits in hundreds of dof per user (short-packet regime) under stringent constraints on reliability/latency/energy efficiency?

Key design tool

Finite-blocklength information theory

Finite-blocklength IT for URLLC

Finite-blocklength IT for URLLC

Guidelines for optimal design (R = 1/2 bit/channel use)

This talk

- FBL-IT bounds for mMTC [Polyanskiy '17]
- Coding schemes approaching the bound
- Extension to
 - Unknown number of active users [Ngo et al. 2023a]
 - Heterogeneous traffic [Ngo et al. 2023b]
- Further extensions and open problems

Traditional multiple access models and their limitations [Gallager '85]

Multiaccess IT [Cover '75, Wyner '74]

- X All users active (no sporadicity)
- Each user is given a different codebook
- X Not feasible for mMTC (overhead too large)

Traditional multiple access models and their limitations [Gallager '85]

Multiaccess IT [Cover '75, Wyner '74]

- X All users active (no sporadicity)
- Each user is given a different codebook
- X Not feasible for mMTC (overhead too large)

Collision resolution [Abramson '70, Roberts '72, Liva '11]

- ✓ Infinitely many, sporadically active users
- **X** Crude modeling of communication aspects
- De-facto standard for mMTC

Traditional multiple access models and their limitations [Gallager '85]

Multiaccess IT [Cover '75, Wyner '74]

- X All users active (no sporadicity)
- Each user is given a different codebook
- X Not feasible for mMTC (overhead too large)

Addressing these limitations

- Noiseless adder channel (e.g., [Bar-David et al., '97])
- More general information-theoretic perspective [Polyanskiy '17]

Collision resolution [Abramson '70, Roberts '72, Liva '11]

- ✓ Infinitely many, sporadically active users
- **×** Crude modeling of communication aspects
- De-facto standard for mMTC

• $W_k \sim \mathsf{Unif}[1:M]$, $k = 1, \ldots, K_{\mathrm{t}}$

- $W_k \sim \mathsf{Unif}[1:M]$, $k = 1, \ldots, K_{\mathrm{t}}$
- Same encoder $f(\cdot)$ (and same codebook) for all users

- $W_k \sim \mathsf{Unif}[1:M]$, $k = 1, \ldots, K_{\mathrm{t}}$
- Same encoder $f(\cdot)$ (and same codebook) for all users
- Decoder produces an unordered list $\widehat{W} = g(\mathbf{y})$ of K_t messages

- $W_k \sim \mathsf{Unif}[1:M]$, $k = 1, \ldots, K_{\mathrm{t}}$
- Same encoder $f(\cdot)$ (and same codebook) for all users
- Decoder produces an unordered list $\widehat{W} = g(\mathbf{y})$ of K_t messages
- $K_{\rm t}$ known to the decoder

- $W_k \sim \mathsf{Unif}[1:M]$, $k = 1, \ldots, K_{\mathrm{t}}$
- Same encoder $f(\cdot)$ (and same codebook) for all users
- Decoder produces an unordered list $\widehat{\mathcal{W}} = g(\mathbf{y})$ of K_{t} messages
- $K_{\rm t}$ known to the decoder
- Per-user error-probability

$$P_{\rm e} = \frac{1}{K_{\rm t}} \sum_{k=1}^{K_{\rm t}} \mathbb{P}\Big[W_k \notin \widehat{\mathcal{W}}\Big]$$

Random coding achievability bound

(M,n,ϵ) code for $K_{ m t}$ -user unsourced GMAC with power constraint P

It consists of a pair of possibly randomized encoder and decoder satisfying $P_{
m e} \leq \epsilon$

Random coding achievability bound

 (M,n,ϵ) code for $K_{
m t}$ -user unsourced GMAC with power constraint P

It consists of a pair of possibly randomized encoder and decoder satisfying $P_{
m e} \leq \epsilon$

Random-coding achievability bound [Polyanskiy '17]

For every P' < P, there exists an (M, n, ϵ) code for the K_t -user unsourced GMAC with power constraint P satisfying

$$\epsilon \leq \sum_{k=1}^{K_{\mathrm{t}}} rac{k}{K_{\mathrm{t}}} \min\{p_k, q_k\} + p_0, \quad ext{where}$$

$$p_0 = \frac{\binom{K_t}{2}}{M} + K_t \mathbb{P}\left[\frac{1}{n} \sum_{j=1}^n z_j^2 > \frac{P}{P'}\right]$$
$$p_k = e^{-E(t)}$$

$$E(t) = \max_{0 \le \rho_1, \rho_2 \le 1} -\rho_1 \rho_2 k R_1 - \rho_2 R_2 + E_0(\rho_1, \rho_2)$$

 $E_0(
ho_1,
ho_2)$: complicated expression in $ho_1,
ho_2,k,P'$

$$q_k = \inf_{\gamma} \mathbb{P}[I_k \le \gamma] + e^{n(kR_1 + R_2) - \gamma}$$

 I_k : related to inf. dens.

$$R_{1} = \frac{1}{n} \log M - \frac{1}{nk} \log k!$$
$$R_{2} = \frac{1}{n} \log \binom{K_{t}}{k}$$

Key ideas and steps in the proof

Random codebook generation and encoder

- Gaussian codebook: fix P' < P; generate M codewords $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_M \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, P'\mathbf{I}_n)$
- Encoder: User k transmits $\mathbf{c}_{W_k} \mathbb{1}\{\|\mathbf{c}_{W_k}\|^2 \le nP\}$

Key ideas and steps in the proof

Random codebook generation and encoder

- Gaussian codebook: fix P' < P; generate M codewords $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_M \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, P'\mathbf{I}_n)$
- Encoder: User k transmits $\mathbf{c}_{W_k} \mathbb{1}\{\|\mathbf{c}_{W_k}\|^2 \le nP\}$

Decoder

Unordered list $\widehat{\mathcal{W}}$ of decoded messages obtained by solving

$$\widehat{\mathcal{W}} = \operatorname*{arg\,min}_{\mathcal{W}' \subset [1:M], |\mathcal{W}'| = K_{\mathrm{t}}} \|\mathbf{y} - \mathbf{c}(\mathcal{W}')\|, \quad \text{with} \quad \mathbf{c}(\mathcal{W}') = \sum_{w \in \mathcal{W}'} \mathbf{c}_w$$

Analysis of per-user error probability

$$P_{\mathbf{e}} = \frac{1}{K_{\mathbf{t}}} \mathbb{E}_{P} \left[\sum_{k=1}^{K_{\mathbf{t}}} \mathbb{1} \left\{ W_{k} \notin \widehat{\mathcal{W}} \right\} \right]$$

P: probability measure on noise, uniform messages, and conditionally Gaussian codewords given that the power constraint is satisfied

Analysis of per-user error probability

$$P_{\mathbf{e}} = \frac{1}{K_{\mathbf{t}}} \mathbb{E}_{P} \left[\sum_{k=1}^{K_{\mathbf{t}}} \mathbb{1} \left\{ W_{k} \notin \widehat{\mathcal{W}} \right\} \right]$$

P: probability measure on noise, uniform messages, and conditionally Gaussian codewords given that the power constraint is satisfied

Change of measure

- Change measure from P to Q for which: messages are distinct and codewords are i.i.d. Gaussian
- For every event \mathcal{E} , $\mathbb{E}_P[\mathcal{E}] \leq \mathbb{E}_Q[\mathcal{E}] + d_{\mathrm{TV}}(P,Q)$

Random coding achievability bound

Random-coding achievability bound [Polyanskiy '17]

For every P' < P, there exists an (M,n,ϵ) code for the $K_{\rm t}$ -user unsourced GMAC with power constraint P satisfying

$$\epsilon \leq \sum_{k=1}^{K_{\mathrm{t}}} rac{k}{K_{\mathrm{t}}} \min\{p_k, q_k\} + rac{p_0}{p_0}, \quad \mathsf{where}$$

$$\begin{aligned} p_0 &= \frac{\binom{K_t}{2}}{M} + K_t \mathbb{P}\left[\frac{1}{n}\sum_{j=1}^n z_j^2 > \frac{P}{P'}\right] \\ p_k &= e^{-E(t)} \\ E(t) &= \max_{0 \le \rho_1, \rho_2 \le 1} -\rho_1 \rho_2 k R_1 - \rho_2 R_2 + E_0(\rho_1, \rho_2) \\ E_0(\rho_1, \rho_2) &: \text{ complicated expression in } \rho_1, \rho_2, k, P' \end{aligned}$$

 $q_{\mathbf{k}} = \inf_{\gamma} \mathbb{P}[I_k \le \gamma] + e^{n(kR_1 + R_2) - \gamma}$

 I_k : related to inf. dens.

$$R_{1} = \frac{1}{n} \log M - \frac{1}{nk} \log k!$$
$$R_{2} = \frac{1}{n} \log \binom{K_{t}}{k}$$

Analysis of per-user error probability

$$\widehat{\mathcal{W}} = \underset{\mathcal{W}' \subset [1:M], |\mathcal{W}'| = K_{t}}{\arg\min} \|\mathbf{y} - \mathbf{c}(\mathcal{W}')\|, \quad \text{with} \quad \mathbf{c}(\mathcal{W}') = \sum_{w \in \mathcal{W}'} \mathbf{c}_{w}$$
$$P_{e} \leq \frac{1}{K_{t}} \mathbb{E}_{Q} \left[\sum_{k=1}^{K_{t}} \mathbb{1}\left\{ W_{k} \notin \widehat{\mathcal{W}} \right\} \right] + p_{0}$$

Analysis of per-user error probability

$$\begin{split} \widehat{\mathcal{W}} &= \mathop{\arg\min}_{\mathcal{W}' \subset [1:M], |\mathcal{W}'| = K_{t}} \|\mathbf{y} - \mathbf{c}(\mathcal{W}')\|, \quad \text{with} \quad \mathbf{c}(\mathcal{W}') = \sum_{w \in \mathcal{W}'} \mathbf{c}_{w} \\ P_{e} &\leq \frac{1}{K_{t}} \mathbb{E}_{Q} \bigg[\sum_{k=1}^{K_{t}} \mathbb{1} \Big\{ W_{k} \notin \widehat{\mathcal{W}} \Big\} \bigg] + p_{0} \end{split}$$

Analysis of per-user error probability

$$\widehat{\mathcal{W}} = \underset{\mathcal{W}' \subset [1:M], |\mathcal{W}'| = K_{t}}{\arg\min} \|\mathbf{y} - \mathbf{c}(\mathcal{W}')\|, \quad \text{with} \quad \mathbf{c}(\mathcal{W}') = \sum_{w \in \mathcal{W}'} \mathbf{c}_{w}$$
$$P_{e} \leq \frac{1}{K_{t}} \mathbb{E}_{Q} \left[\sum_{k=1}^{K_{t}} \mathbb{I}\left\{ W_{k} \notin \widehat{\mathcal{W}} \right\} \right] + p_{0}$$

 \mathbb{P}

$$P_{e} \leq \sum_{k=1}^{K_{t}} \frac{k}{K_{t}} \mathbb{P}[|\mathcal{W}_{md}| = |\mathcal{W}_{fp}| = k] + p_{0}$$
$$[|\mathcal{W}_{md}| = |\mathcal{W}_{fp}| = k] = \mathbb{P}\left[\bigcup_{\substack{\mathcal{W}_{md} \subset \mathcal{W} \\ |\mathcal{W}_{md}| = k}} \bigcup_{\substack{\mathcal{W}_{fp} \subset [1:M] \setminus \mathcal{W} \\ |\mathcal{W}_{fp}| = k}} ||\mathbf{z} + \mathbf{c}(\mathcal{W}_{md}) - \mathbf{c}(\mathcal{W}_{fp})|| \leq ||\mathbf{z}||\right]$$

Three tools and their applications

Chernoff: for every random \mathbf{u} and every $\lambda > 0$ $\mathbb{P}[\|\mathbf{z} + \mathbf{u}\| \le v] \le e^{\lambda v^2} \mathbb{E}_{\mathbf{z}} \Big[e^{-\lambda \|\mathbf{z} + \mathbf{u}\|^2} \Big]$

Three tools and their applications

Chernoff: for every random **u** and every $\lambda > 0$ $\mathbb{P}[\|\mathbf{z} + \mathbf{u}\| \le v] \le e^{\lambda v^2} \mathbb{E}_{\mathbf{z}} \left[e^{-\lambda \|\mathbf{z} + \mathbf{u}\|^2} \right]$ MGF of Gaussian vector: if $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ $\mathbb{E}_{\mathbf{z}} \left[e^{-\lambda \|\mathbf{z} + \mathbf{u}\|^2} \right] = \frac{e^{-\frac{\lambda \|\mathbf{u}\|^2}{1 + 2\sigma^2 \lambda}}}{(1 + 2\sigma^2 \lambda)^{n/2}}$

Three tools and their applications

Chernoff: for every random \mathbf{u} and every $\lambda > 0$ $\mathbb{P}[\|\mathbf{z} + \mathbf{u}\| \le v] \le e^{\lambda v^2} \mathbb{E}_{\mathbf{z}} \left[e^{-\lambda \|\mathbf{z} + \mathbf{u}\|^2} \right]$

MGF of Gaussian vector: if $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$

$$\mathbb{E}_{\mathbf{z}}\left[e^{-\lambda\|\mathbf{z}+\mathbf{u}\|^2}\right] = \frac{e^{-\frac{\lambda\|\mathbf{u}\|^2}{1+2\sigma^2\lambda}}}{(1+2\sigma^2\lambda)^{n/2}}$$

Gallager's trick to tighten the union bound

- Assume that $\mathbb{P}[\mathcal{A}_j \mid \mathbf{z}] \leq e^{-nE(\mathbf{z})}, j = 1, \dots, m$
- Then for all $0 \le \rho \le 1$

$$\mathbb{P}\left[\bigcup_{j=1}^{m} \mathcal{A}_{j}\right] \leq m^{\rho} \mathbb{E}\left[e^{-n\rho E(\mathbf{z})}\right]$$

LSIT | Giuseppe Durisi
Chernoff: for every random \mathbf{u} and every $\lambda > 0$ $\mathbb{P}[\|\mathbf{z} + \mathbf{u}\| \le v] \le e^{\lambda v^2} \mathbb{E}_{\mathbf{z}} \Big[e^{-\lambda \|\mathbf{z} + \mathbf{u}\|^2} \Big]$

MGF of Gaussian vector: if $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$

$$\mathbb{E}_{\mathbf{z}}\left[e^{-\lambda \|\mathbf{z}+\mathbf{u}\|^2}\right] = \frac{e^{-\frac{\lambda \|\mathbf{u}\|^2}{1+2\sigma^2\lambda}}}{(1+2\sigma^2\lambda)^{n/2}}$$

Gallager's trick to tighten the union bound

- Assume that $\mathbb{P}[\mathcal{A}_j \mid \mathbf{z}] \leq e^{-nE(\mathbf{z})}, j = 1, \dots, m$
- Then for all $0 \le \rho \le 1$

$$\mathbb{P}\left[\bigcup_{j=1}^{m} \mathcal{A}_{j}\right] \leq m^{\rho} \mathbb{E}\left[e^{-n\rho E(\mathbf{z})}\right]$$

LSIT | Giuseppe Durisi

$$\mathbb{P} \Bigg[\bigcup_{\mathcal{W}_{md}} \bigcup_{\mathcal{W}_{fp}} \| \mathbf{z} + \mathbf{c}(\mathcal{W}_{md}) - \mathbf{c}(\mathcal{W}_{fp}) \| \leq \| \mathbf{z} \| \Bigg]$$

Chernoff: for every random \mathbf{u} and every $\lambda > 0$ $\mathbb{P}[\|\mathbf{z} + \mathbf{u}\| \le v] \le e^{\lambda v^2} \mathbb{E}_{\mathbf{z}} \Big[e^{-\lambda \|\mathbf{z} + \mathbf{u}\|^2} \Big]$

MGF of Gaussian vector: if $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$

$$\mathbb{E}_{\mathbf{z}}\left[e^{-\lambda \|\mathbf{z}+\mathbf{u}\|^2}\right] = \frac{e^{-\frac{\lambda \|\mathbf{u}\|^2}{1+2\sigma^2\lambda}}}{(1+2\sigma^2\lambda)^{n/2}}$$

Gallager's trick to tighten the union bound

- Assume that $\mathbb{P}[\mathcal{A}_j \mid \mathbf{z}] \leq e^{-nE(\mathbf{z})}, j = 1, \dots, m$
- Then for all $0 \le \rho \le 1$

$$\mathbb{P}\left[\bigcup_{j=1}^{m} \mathcal{A}_{j}\right] \leq m^{\rho} \mathbb{E}\left[e^{-n\rho E(\mathbf{z})}\right]$$

LSIT | Giuseppe Durisi

$$\mathbb{P} \Bigg[\bigcup_{\mathcal{W}_{md}} \bigcup_{\mathcal{W}_{fp}} \lVert \mathbf{z} + \mathbf{c}(\mathcal{W}_{md}) - \mathbf{c}(\mathcal{W}_{fp}) \rVert \leq \lVert \mathbf{z} \rVert \Bigg]$$

Chernoff: for every random \mathbf{u} and every $\lambda > 0$ $\mathbb{P}[\|\mathbf{z} + \mathbf{u}\| \le v] \le e^{\lambda v^2} \mathbb{E}_{\mathbf{z}} \Big[e^{-\lambda \|\mathbf{z} + \mathbf{u}\|^2} \Big]$

MGF of Gaussian vector: if $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$

$$\mathbb{E}_{\mathbf{z}}\left[e^{-\lambda \|\mathbf{z}+\mathbf{u}\|^2}\right] = \frac{e^{-\frac{\lambda \|\mathbf{u}\|^2}{1+2\sigma^2\lambda}}}{(1+2\sigma^2\lambda)^{n/2}}$$

Gallager's trick to tighten the union bound

- Assume that $\mathbb{P}[\mathcal{A}_j \mid \mathbf{z}] \leq e^{-nE(\mathbf{z})}, j = 1, \dots, m$
- Then for all $0 \le \rho \le 1$

$$\mathbb{P}\left[\bigcup_{j=1}^{m} \mathcal{A}_{j}\right] \leq m^{\rho} \mathbb{E}\left[e^{-n\rho E(\mathbf{z})}\right]$$

LSIT | Giuseppe Durisi

$$\mathbb{P} \Biggl[\bigcup_{\mathcal{W}_{\mathrm{md}}} \bigcup_{\mathcal{W}_{\mathrm{fp}}} \lVert \mathbf{z} + \mathbf{c}(\mathcal{W}_{\mathrm{md}}) - \mathbf{c}(\mathcal{W}_{\mathrm{fp}}) \rVert \leq \lVert \mathbf{z} \rVert \Biggr]$$

 $1. \ \ \ Chernoff \ \ bound \ \ to \ \ evaluate$

$$\mathbb{P}\Big[\|\mathbf{z} + \mathbf{c}(\mathcal{W}_{\mathrm{md}}) - \mathbf{c}(\mathcal{W}_{\mathrm{fp}})\| \leq \|\mathbf{z}\| \,|\, \mathbf{c}(\mathcal{W}_{\mathrm{md}}), \mathbf{z}$$

Chernoff: for every random \mathbf{u} and every $\lambda > 0$ $\mathbb{P}[\|\mathbf{z} + \mathbf{u}\| \le v] \le e^{\lambda v^2} \mathbb{E}_{\mathbf{z}} \Big[e^{-\lambda \|\mathbf{z} + \mathbf{u}\|^2} \Big]$

```
MGF of Gaussian vector: if \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)
```

$$\mathbb{E}_{\mathbf{z}}\left[e^{-\lambda \|\mathbf{z}+\mathbf{u}\|^2}\right] = \frac{e^{-\frac{\lambda \|\mathbf{u}\|^2}{1+2\sigma^2\lambda}}}{(1+2\sigma^2\lambda)^{n/2}}$$

Gallager's trick to tighten the union bound

- Assume that $\mathbb{P}[\mathcal{A}_j \mid \mathbf{z}] \leq e^{-nE(\mathbf{z})}, j = 1, \dots, m$
- Then for all $0 \le \rho \le 1$

$$\mathbb{P}\left[\bigcup_{j=1}^{m} \mathcal{A}_{j}\right] \leq m^{\rho} \mathbb{E}\left[e^{-n\rho E(\mathbf{z})}\right]$$

LSIT | Giuseppe Durisi

$$\mathbb{P} \Biggl[\bigcup_{\mathcal{W}_{\mathrm{md}}} \bigcup_{\mathcal{W}_{\mathrm{fp}}} \lVert \mathbf{z} + \mathbf{c}(\mathcal{W}_{\mathrm{md}}) - \mathbf{c}(\mathcal{W}_{\mathrm{fp}}) \rVert \leq \lVert \mathbf{z} \rVert \Biggr]$$

- 1. Chernoff bound to evaluate $\mathbb{P}\Big[\|\mathbf{z} + \mathbf{c}(\mathcal{W}_{\mathrm{md}}) \mathbf{c}(\mathcal{W}_{\mathrm{fp}})\| \leq \|\mathbf{z}\| \mid \mathbf{c}(\mathcal{W}_{\mathrm{md}}), \mathbf{z}\Big]$
- 2. Gallager's trick on $\bigcup_{W_{fp}}$

Chernoff: for every random \mathbf{u} and every $\lambda > 0$ $\mathbb{P}[\|\mathbf{z} + \mathbf{u}\| \le v] \le e^{\lambda v^2} \mathbb{E}_{\mathbf{z}} \Big[e^{-\lambda \|\mathbf{z} + \mathbf{u}\|^2} \Big]$

```
MGF of Gaussian vector: if \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)
```

$$\mathbb{E}_{\mathbf{z}}\left[e^{-\lambda \|\mathbf{z}+\mathbf{u}\|^2}\right] = \frac{e^{-\frac{\lambda \|\mathbf{u}\|^2}{1+2\sigma^2\lambda}}}{(1+2\sigma^2\lambda)^{n/2}}$$

Gallager's trick to tighten the union bound

- Assume that $\mathbb{P}[\mathcal{A}_j \mid \mathbf{z}] \leq e^{-nE(\mathbf{z})}, j = 1, \dots, m$
- Then for all $0 \le \rho \le 1$

$$\mathbb{P}\left[\bigcup_{j=1}^{m} \mathcal{A}_{j}\right] \leq m^{\rho} \mathbb{E}\left[e^{-n\rho E(\mathbf{z})}\right]$$

LSIT | Giuseppe Durisi

$$\mathbb{P} \Biggl[\bigcup_{\mathcal{W}_{\mathrm{md}}} \bigcup_{\mathcal{W}_{\mathrm{fp}}} \| \mathbf{z} + \mathbf{c}(\mathcal{W}_{\mathrm{md}}) - \mathbf{c}(\mathcal{W}_{\mathrm{fp}}) \| \leq \| \mathbf{z} \| \Biggr]$$

- 1. Chernoff bound to evaluate $\sum_{i=1}^{n} ||f_{i}| = \int_{0}^{1} ||f_{i}$
 - $\mathbb{P}\Big[\|\mathbf{z} + \mathbf{c}(\mathcal{W}_{\mathrm{md}}) \mathbf{c}(\mathcal{W}_{\mathrm{fp}}) \| \leq \|\mathbf{z}\| \mid \mathbf{c}(\mathcal{W}_{\mathrm{md}}), \mathbf{z} \ \Big]$
- 2. Gallager's trick on $\bigcup_{W_{fp}}$
- 3. MGF to compute expectation over $\mathbf{c}(\mathcal{W}_{\mathrm{md}})$

Chernoff: for every random \mathbf{u} and every $\lambda > 0$ $\mathbb{P}[\|\mathbf{z} + \mathbf{u}\| \le v] \le e^{\lambda v^2} \mathbb{E}_{\mathbf{z}} \Big[e^{-\lambda \|\mathbf{z} + \mathbf{u}\|^2} \Big]$

```
MGF of Gaussian vector: if \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)
```

$$\mathbb{E}_{\mathbf{z}}\left[e^{-\lambda \|\mathbf{z}+\mathbf{u}\|^2}\right] = \frac{e^{-\frac{\lambda \|\mathbf{u}\|^2}{1+2\sigma^2\lambda}}}{(1+2\sigma^2\lambda)^{n/2}}$$

Gallager's trick to tighten the union bound

- Assume that $\mathbb{P}[\mathcal{A}_j \mid \mathbf{z}] \leq e^{-nE(\mathbf{z})}, j = 1, \dots, m$
- Then for all $0 \le \rho \le 1$

$$\mathbb{P}\left[\bigcup_{j=1}^{m} \mathcal{A}_{j}\right] \leq m^{\rho} \mathbb{E}\left[e^{-n\rho E(\mathbf{z})}\right]$$

LSIT | Giuseppe Durisi

$$\mathbb{P} \Biggl[\bigcup_{\mathcal{W}_{\mathrm{md}}} \bigcup_{\mathcal{W}_{\mathrm{fp}}} \lVert \mathbf{z} + \mathbf{c}(\mathcal{W}_{\mathrm{md}}) - \mathbf{c}(\mathcal{W}_{\mathrm{fp}}) \rVert \leq \lVert \mathbf{z} \rVert \Biggr]$$

- 1. Chernoff bound to evaluate
 - $\mathbb{P}\Big[\|\mathbf{z} + \mathbf{c}(\mathcal{W}_{\mathrm{md}}) \mathbf{c}(\mathcal{W}_{\mathrm{fp}}) \| \leq \|\mathbf{z}\| \, | \, \mathbf{c}(\mathcal{W}_{\mathrm{md}}), \mathbf{z} \, \Big]$
- 2. Gallager's trick on $\bigcup_{W_{fp}}$
- 3. MGF to compute expectation over $c(\mathcal{W}_{\mathrm{md}})$
- 4. Gallager's trick on $\bigcup_{W_{md}}$

Chernoff: for every random \mathbf{u} and every $\lambda > 0$ $\mathbb{P}[\|\mathbf{z} + \mathbf{u}\| \le v] \le e^{\lambda v^2} \mathbb{E}_{\mathbf{z}} \Big[e^{-\lambda \|\mathbf{z} + \mathbf{u}\|^2} \Big]$

```
MGF of Gaussian vector: if \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)
```

$$\mathbb{E}_{\mathbf{z}}\left[e^{-\lambda \|\mathbf{z}+\mathbf{u}\|^2}\right] = \frac{e^{-\frac{\lambda \|\mathbf{u}\|^2}{1+2\sigma^2\lambda}}}{(1+2\sigma^2\lambda)^{n/2}}$$

Gallager's trick to tighten the union bound

- Assume that $\mathbb{P}[\mathcal{A}_j \mid \mathbf{z}] \leq e^{-nE(\mathbf{z})}, j = 1, \dots, m$
- Then for all $0 \le \rho \le 1$

$$\mathbb{P}\left[\bigcup_{j=1}^{m} \mathcal{A}_{j}\right] \leq m^{\rho} \mathbb{E}\left[e^{-n\rho E(\mathbf{z})}\right]$$

LSIT | Giuseppe Durisi

$$\mathbb{P} \Bigg[\bigcup_{\mathcal{W}_{\mathrm{md}}} \bigcup_{\mathcal{W}_{\mathrm{fp}}} \| \mathbf{z} + \mathbf{c}(\mathcal{W}_{\mathrm{md}}) - \mathbf{c}(\mathcal{W}_{\mathrm{fp}}) \| \leq \| \mathbf{z} \| \Bigg]$$

- 1. Chernoff bound to evaluate
 - $\mathbb{P}\Big[\|\mathbf{z} + \mathbf{c}(\mathcal{W}_{\mathrm{md}}) \mathbf{c}(\mathcal{W}_{\mathrm{fp}})\| \leq \|\mathbf{z}\| \mid \mathbf{c}(\mathcal{W}_{\mathrm{md}}), \mathbf{z}\Big]$
- 2. Gallager's trick on $\bigcup_{W_{fp}}$
- 3. MGF to compute expectation over $c(\mathcal{W}_{\mathrm{md}})$
- 4. Gallager's trick on $\bigcup_{\mathcal{W}_{md}}$
- 5. MGF to compute expectation over \mathbf{z}

Random coding achievability bound [Polyanskiy '17]

For every P' < P, there exists an (M, n, ϵ) code for the K_t -user unsourced GMAC with power constraint P satisfying

$$\epsilon \leq \sum_{k=1}^{K_{\rm t}} \frac{k}{K_{\rm t}} \min\{\frac{p_k}{R_{\rm t}}, q_k\} + p_0, \quad \text{where}$$

$$p_{0} = \frac{\binom{K_{t}}{2}}{M} + K_{t} \mathbb{P}\left[\frac{1}{n} \sum_{j=1}^{n} z_{j}^{2} > \frac{P}{P'}\right]$$

$$p_{k} = e^{-E(t)}$$

$$E(t) = \max_{0 \le |\rho_{1}|, |\rho_{2}| \le 1} -\rho_{1}\rho_{2}k|R_{1}| - \rho_{2}|R_{2}| + E_{0}(\rho_{1}, \rho_{2})$$

 $E_0(
ho_1,
ho_2)$: complicated expression in $ho_1,
ho_2,k,P'$

 $q_k = \inf_{\gamma} \mathbb{P}[I_k \le \gamma] + e^{n(kR_1 + R_2) - \gamma}$

 I_k : related to inf. dens.

$$R_{1} = \frac{1}{n} \log M - \frac{1}{nk} \log k!$$

$$R_{2} = \frac{1}{n} \log \binom{K_{t}}{k}$$

 $K_{\rm t}$ is random and not known to the receiver [Ngo et al. '23a]

 K_{t} known $\Rightarrow |\mathcal{W}_{\mathrm{md}}| = |\mathcal{W}_{\mathrm{fp}}|$

$K_{\rm t}$ is random and not known to the receiver [Ngo et al. '23a]

 K_{t} known $\Rightarrow |\mathcal{W}_{\mathrm{md}}| = |\mathcal{W}_{\mathrm{fp}}|$

 $K_{\rm t}$ unknown $\Rightarrow |\mathcal{W}_{\rm md}| \neq |\mathcal{W}_{\rm fp}|$

CHALMERS

 $K_{\rm t}$ is random and not known to the receiver [Ngo et al. '23a]

 $K_{\rm t}$ known $\Rightarrow |\mathcal{W}_{\rm md}| = |\mathcal{W}_{\rm fp}|$

 $K_{\rm t}$ unknown $\Rightarrow |\mathcal{W}_{\rm md}| \neq |\mathcal{W}_{\rm fp}|$

Pragmatic mismatched approach

Estimate K_{t} and deploy a coding scheme that treats K_{t} as known

Performance metrics and definition of a code

Two performance metrics

$$P_{\mathrm{md}} = \mathbb{E}\left[\frac{1}{|\mathcal{W}|} \sum_{i=1}^{|\mathcal{W}|} \mathbb{P}\left[W_i \notin \widehat{\mathcal{W}}\right]\right]$$

$$P_{\rm fp} = \mathbb{E}\left[\frac{1}{\left|\widehat{\mathcal{W}}\right|} \sum_{i=1}^{\left|\widehat{\mathcal{W}}\right|} \mathbb{P}\left[\widehat{\mathcal{W}}_{i} \notin \mathcal{W}\right]\right]$$

Performance metrics and definition of a code

Two performance metrics

$$P_{\rm md} = \mathbb{E}\left[\frac{1}{|\mathcal{W}|}\sum_{i=1}^{|\mathcal{W}|} \mathbb{P}\left[W_i \notin \widehat{\mathcal{W}}\right]\right] \qquad \qquad P_{\rm fp} = \mathbb{E}\left[\frac{1}{|\widehat{\mathcal{W}}|}\sum_{i=1}^{|\widehat{\mathcal{W}}|} \mathbb{P}\left[\widehat{W}_i \notin \mathcal{W}\right]\right]$$

 $(M, n, \epsilon_{\rm md}, \epsilon_{\rm fp})$ code for unsourced GMAC with power constraint P and random, unknown number of transmitting users

It consists of a pair of possibly randomized encoder and decoder satisfying $P_{\rm md} \leq \epsilon_{\rm md}$ and $P_{\rm fp} \leq \epsilon_{\rm fp}$

A two-step decoder

Step 1

Obtain an estimate $K'_{
m t}$ of $K_{
m t}$ by maximizing a suitably chosen metric $m({f y},k)$

$$K'_{t} = \arg\max_{k} m(\mathbf{y}, k)$$

Examples: ML estimation, energy-based estimation

A two-step decoder

Step 1

Obtain an estimate $K_{
m t}'$ of $K_{
m t}$ by maximizing a suitably chosen metric $m({f y},k)$

$$K'_{\rm t} = rg\max_k m(\mathbf{y}, k)$$

Examples: ML estimation, energy-based estimation

Step 2 Find the list $\widehat{\mathcal{W}}$ of decoded messages as $\widehat{\mathcal{W}} = \underset{\substack{\mathcal{W}' \subset [1:M]\\ |\mathcal{W}'| = \mathcal{K}'_t}{\arg\min \|\mathbf{y} - \mathbf{c}(\mathcal{W}')\|}$

A two-step decoder

Step 1

Obtain an estimate $K_{
m t}'$ of $K_{
m t}$ by maximizing a suitably chosen metric $m({f y},k)$

$$K'_{\rm t} = rg\max_k m(\mathbf{y}, k)$$

Examples: ML estimation, energy-based estimation

Step 2 Find the list $\widehat{\mathcal{W}}$ of decoded messages as $\widehat{\mathcal{W}} = \arg \min_{\substack{\mathcal{W}' \subset [1:M]\\K'_t - r \leq |\mathcal{W}'| \leq K'_t + r}} \|\mathbf{y} - \mathbf{c}(\mathcal{W}')\|$

r > 0: decoding radius (cannot be chosen too large)

$$M=2^{128}$$
, $n=38\,400$, $K_{
m t}\sim {
m Poisson}$, $\epsilon_{
m md}=\epsilon_{
m fp}=0.1^{-1}$

$$M=2^{128}$$
, $n=38\,400$, $K_{
m t}\sim {
m Poisson}$, $\epsilon_{
m md}=\epsilon_{
m fp}=0.1^{-1}$

Impact of decoding radius r

Impact of decoding radius r

 $M = 2^{128}$, $n = 38\,400$, $K_{\rm t} \sim {\rm Poisson}$, $\epsilon_{\rm md} = \epsilon_{\rm fp} = 10^{-3}$

 $M = 2^{128}$, $n = 38\,400$, $K_{\rm t} \sim {\rm Poisson}$, $\epsilon_{\rm md} = \epsilon_{\rm fp} = 10^{-3}$

Heterogeneous traffic: massive and critical IoTs [Ngo et al. '23b]

- K devices
- K_s devices transmit a standard msg.
- $K_{\rm a}$ devices transmit an alarm msg.

• Device k has a standard message $W_{\rm s} \in [1:M_{\rm s}]$ with prob. $\rho_{\rm s}$ $K_{\rm s} \sim {\rm Bin}(K,\rho_{\rm s})$

• If an alarm occurs, all devices transmit the same alarm message $W_{\rm a} \in [1:M_{\rm a}]$, with probability $\rho_{\rm a} \leq \rho_{\rm a,max}$

 $K_{\rm a} \sim {\rm Bin}(K, \rho_{\rm a})$

• Each device can transmit a standard message, an alarm message, both, or none

Performance metrics

- \mathcal{A} : alarm event
- \mathcal{W} : set of transmitted standard messages
- $\widehat{\mathcal{W}}$: set of decoded standard messages
- $W_{\mathrm{a}} \in [1:M_{\mathrm{a}}]$: transmitted alarm message
- $\widehat{W}_{\mathrm{a}} \in [0:M_{\mathrm{a}}]$: decoded alarm message ($0 \Rightarrow$ no alarm)

Performance metrics

- A: alarm event
- \mathcal{W} : set of transmitted standard messages
- $\widehat{\mathcal{W}}$: set of decoded standard messages
- $W_{\rm a} \in [1:M_{\rm a}]$: transmitted alarm message
- $\widehat{W}_{\mathrm{a}} \in [0:M_{\mathrm{a}}]$: decoded alarm message ($0 \Rightarrow$ no alarm)

For
$$\mathcal{B} \in \{\mathcal{A}, \overline{\mathcal{A}}\}$$

$$P_{\mathsf{smd} \mid \mathcal{B}} = \mathbb{E}\left[\frac{1}{|\mathcal{W}|} \sum_{i=1}^{|\mathcal{W}|} \mathbb{P}\left[W_i \notin \widehat{\mathcal{W}} \mid \mathcal{B}\right]\right], \quad P_{\mathsf{sfp} \mid \mathcal{B}} = \mathbb{E}\left[\frac{1}{|\widehat{\mathcal{W}}|} \sum_{i=1}^{|\widehat{\mathcal{W}}|} \mathbb{P}\left[\widehat{W}_i \notin \mathcal{W} \mid \mathcal{B}\right]\right]$$
Performance metrics

- A: alarm event
- \mathcal{W} : set of transmitted standard messages
- $\widehat{\mathcal{W}}$: set of decoded standard messages
- $W_{\rm a} \in [1:M_{\rm a}]$: transmitted alarm message
- $\widehat{W}_{\mathrm{a}} \in [0:M_{\mathrm{a}}]$: decoded alarm message ($0 \Rightarrow$ no alarm)

For
$$\mathcal{B} \in \{\mathcal{A}, \overline{\mathcal{A}}\}$$

$$P_{\mathsf{smd} \mid \mathcal{B}} = \mathbb{E}\left[\frac{1}{|\mathcal{W}|} \sum_{i=1}^{|\mathcal{W}|} \mathbb{P}\left[W_i \notin \widehat{\mathcal{W}} \mid \mathcal{B}\right]\right], \quad P_{\mathsf{sfp} \mid \mathcal{B}} = \mathbb{E}\left[\frac{1}{|\widehat{\mathcal{W}}|} \sum_{i=1}^{|\widehat{\mathcal{W}}|} \mathbb{P}\left[\widehat{W}_i \notin \mathcal{W} \mid \mathcal{B}\right]\right]$$

$$P_{\mathrm{amd}} = \mathbb{P}\Big[\widehat{W}_{\mathrm{a}} \neq W_{a} \,|\, \mathcal{A}\Big]\,, \quad P_{\mathrm{afp}} = \mathbb{P}\Big[\widehat{W}_{\mathrm{a}} \neq 0 \,|\, \bar{\mathcal{A}}\Big]$$

Definition of code and coexistence strategies

 $(M_{\rm a}, M_{\rm s}, n, \epsilon_{\rm smd}, \epsilon_{\rm sfp}, \epsilon_{\rm amd}, \epsilon_{\rm afp})$ code for unsourced GMAC with standard and alarm messages It consists of a pair of possibly randomized encoder and decoder satisfying $P_{\rm smd \mid B} \leq \epsilon_{\rm smd}$, $P_{\rm sfp \mid B} \leq \epsilon_{\rm sfp}$, for $\mathcal{B} \in \{\mathcal{A}, \bar{\mathcal{A}}\}$ and $P_{\rm amd} \leq \epsilon_{\rm amd}$, $P_{\rm afp} \leq \epsilon_{\rm afp}$

Definition of code and coexistence strategies

 $(M_{\rm a}, M_{\rm s}, n, \epsilon_{\rm smd}, \epsilon_{\rm sfp}, \epsilon_{\rm amd}, \epsilon_{\rm afp})$ code for unsourced GMAC with standard and alarm messages It consists of a pair of possibly randomized encoder and decoder satisfying $P_{\rm smd \mid B} \leq \epsilon_{\rm smd}$, $P_{\rm sfp \mid B} \leq \epsilon_{\rm sfp}$, for $\mathcal{B} \in \{\mathcal{A}, \bar{\mathcal{A}}\}$ and $P_{\rm amd} \leq \epsilon_{\rm amd}$, $P_{\rm afp} \leq \epsilon_{\rm afp}$

Definition of code and coexistence strategies

 $(M_{\rm a}, M_{\rm s}, n, \epsilon_{\rm smd}, \epsilon_{\rm sfp}, \epsilon_{\rm amd}, \epsilon_{\rm afp})$ code for unsourced GMAC with standard and alarm messages It consists of a pair of possibly randomized encoder and decoder satisfying $P_{\rm smd \mid B} \leq \epsilon_{\rm smd}$, $P_{\rm sfp \mid B} \leq \epsilon_{\rm sfp}$, for $\mathcal{B} \in \{\mathcal{A}, \bar{\mathcal{A}}\}$ and $P_{\rm amd} \leq \epsilon_{\rm amd}$, $P_{\rm afp} \leq \epsilon_{\rm afp}$

Orthogonalization

$$\mathbf{y}_{ ext{s}} = \sum_{k=1}^{K_{ ext{s}}} \mathbf{x}_k + \mathbf{z}_{ ext{s}}, \quad \mathbf{z}_{ ext{s}} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{n_{ ext{s}}})$$

- $\|\mathbf{x}_k\|^2 \leq n_{\mathrm{s}} P_{\mathrm{s}}$
- $(E_{\rm b}/N_0)_{\rm s} = \frac{n_{\rm s}P_{\rm s}}{2\log_2 M_{\rm s}}$
- unsourced GMAC with random and unknown number of active users
- Can be analyzed as before

Alarm block

$$\mathbf{y}_{\mathrm{a}} = K_{\mathrm{a}}\mathbf{x}_{\mathrm{a}} + \mathbf{z}_{\mathrm{a}}, \quad \mathbf{z}_{\mathrm{a}} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{n_{a}})$$

- $\|\mathbf{x}_{\mathrm{a}}\|^2 \leq n_{\mathrm{a}} P_{\mathrm{a}}$
- $(E_{\rm b}/N_0)_{\rm a} = \frac{n_{\rm a}P_{\rm a}\rho_{\rm a}K}{2\log_2 M_{\rm a}}$
- Single-user AWGN channel with random, unknown SNR K²_aP_a (coherent combining)
- Can be analyzed with FBL tools

Random codebook generation and encoder

- Gaussian codebook: fix $P'_{a} < P_{a}$; generate M_{a} codewords $\mathbf{c}_{1}, \ldots, \mathbf{c}_{M_{a}} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, P'_{a}\mathbf{I}_{n_{a}})$
- Encoder: User k transmits $\mathbf{c}_{W_0} \mathbb{1}\{\|\mathbf{c}_{W_0}\|^2 \leq nP_{\mathbf{a}}\}$ with probability $\rho_{\mathbf{a}}$

Random codebook generation and encoder

- Gaussian codebook: fix $P'_{\rm a} < P_{\rm a}$; generate $M_{\rm a}$ codewords $\mathbf{c}_1, \ldots, \mathbf{c}_{M_{\rm a}} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, P'_{\rm a} \mathbf{I}_{n_{\rm a}})$
- Encoder: User k transmits $\mathbf{c}_{W_0} \mathbbm{1}\{\|\mathbf{c}_{W_0}\|^2 \le nP_{\mathrm{a}}\}$ with probability ρ_{a}

Two-step mismatch decoder

Random codebook generation and encoder

- Gaussian codebook: fix $P'_{\rm a} < P_{\rm a}$; generate $M_{\rm a}$ codewords $\mathbf{c}_1, \ldots, \mathbf{c}_{M_{\rm a}} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, P'_{\rm a} \mathbf{I}_{n_{\rm a}})$
- Encoder: User k transmits $\mathbf{c}_{W_0} \mathbbm{1}\{\|\mathbf{c}_{W_0}\|^2 \leq nP_{\mathbf{a}}\}$ with probability $\rho_{\mathbf{a}}$

Two-step mismatch decoder

• Detection of alarm event and number of devices: $K'_{a} = \underset{k \in [k_{p}:k_{u}] \cup \{0\}}{\arg \max} p(\mathbf{y}_{a} \mid k)$

 $\begin{array}{c|c} \bullet & \bullet \\ 0 & k_{\ell} & \rho_{\rm a} K & k_{u} \end{array}$

Random codebook generation and encoder

- Gaussian codebook: fix $P'_{\rm a} < P_{\rm a}$; generate $M_{\rm a}$ codewords $\mathbf{c}_1, \ldots, \mathbf{c}_{M_{\rm a}} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, P'_{\rm a} \mathbf{I}_{n_{\rm a}})$
- Encoder: User k transmits $\mathbf{c}_{W_0} \mathbbm{1}\{\|\mathbf{c}_{W_0}\|^2 \leq nP_{\mathbf{a}}\}$ with probability $\rho_{\mathbf{a}}$

Two-step mismatch decoder

• Detection of alarm event and number of devices: $K'_{a} = \underset{k \in [k_{\ell}:k_{u}] \cup \{0\}}{\arg \max} p(\mathbf{y}_{a} \mid k)$

• Decoding of W_{a} : if $K_{\mathrm{a}}'=0$ return $\widehat{W}_{\mathrm{a}}=0$; otherwise

$$\{\widehat{W}_{\mathbf{a}}, \widehat{K}_{\mathbf{a}}\} = \operatorname*{arg\,min}_{w \in [0:M_{\mathbf{a}}], k \in [k_l:k_u] \cup \{0\}} \|\mathbf{y}_{\mathbf{a}} - k\mathbf{c}_w\|^2$$

Random codebook generation and encoder

- Gaussian codebook: fix $P'_{\rm a} < P_{\rm a}$; generate $M_{\rm a}$ codewords $\mathbf{c}_1, \ldots, \mathbf{c}_{M_{\rm a}} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, P'_{\rm a} \mathbf{I}_{n_{\rm a}})$
- Encoder: User k transmits $\mathbf{c}_{W_0} \mathbbm{1}\{\|\mathbf{c}_{W_0}\|^2 \leq nP_{\mathbf{a}}\}$ with probability $\rho_{\mathbf{a}}$

Two-step mismatch decoder

• Detection of alarm event and number of devices: $K'_{\mathbf{a}} = \underset{k \in [k_{\ell}:k_{\mathbf{a}}] \cup \{0\}}{\operatorname{arg max}} p(\mathbf{y}_{\mathbf{a}} \mid k)$

$$0 k_{\ell} \rho_{\mathbf{a}} K k_{u}$$

• Decoding of W_{a} : if $K_{\mathrm{a}}'=0$ return $\widehat{W}_{\mathrm{a}}=0$; otherwise

$$\{\widehat{W}_{\mathbf{a}}, \widehat{K}_{\mathbf{a}}\} = \arg\min_{w \in [0:M_{\mathbf{a}}], k \in [k_l:k_u] \cup \{0\}} \|\mathbf{y}_{\mathbf{a}} - k\mathbf{c}_w\|^2$$

• Bounds on P_{amd} and P_{afp} via random coding union bound with parameter s

- $n = 30\,000$, $(M_{\rm a}, M_{\rm s}) = (2^3, 2^{100})$, $1000 \le K \le 30\,000$, $\rho_{\rm s} = 0.01$
- $\max{\{\epsilon_{\rm smd}, \epsilon_{\rm sfp}\}} \le 10^{-1}$, $\max{\{\epsilon_{\rm amd}, \epsilon_{\rm afp}\}} \le 10^{-5}$

•
$$n = 30\,000$$
, $(M_{\rm a}, M_{\rm s}) = (2^3, 2^{100})$, $1000 \le K \le 30\,000$, $\rho_{\rm s} = 0.01$

• $\max{\{\epsilon_{\rm smd}, \epsilon_{\rm sfp}\}} \le 10^{-1}$, $\max{\{\epsilon_{\rm amd}, \epsilon_{\rm afp}\}} \le 10^{-5}$

•
$$n = 30\,000$$
, $(M_{\rm a}, M_{\rm s}) = (2^3, 2^{100})$, $1000 \le K \le 30\,000$, $\rho_{\rm s} = 0.01$

• $\max{\{\epsilon_{\rm smd}, \epsilon_{\rm sfp}\}} \le 10^{-1}$, $\max{\{\epsilon_{\rm amd}, \epsilon_{\rm afp}\}} \le 10^{-5}$

•
$$n = 30\,000$$
, $(M_{\rm a}, M_{\rm s}) = (2^3, 2^{100})$, $1000 \le K \le 30\,000$, $\rho_{\rm s} = 0.01$

• $\max{\{\epsilon_{\rm smd}, \epsilon_{\rm sfp}\}} \le 10^{-1}$, $\max{\{\epsilon_{\rm amd}, \epsilon_{\rm afp}\}} \le 10^{-5}$

Given a target $(E_{\rm b}/N_0)_{\rm s}$ achieving the standard msg. constr., what is the smallest $(E_{\rm b}/N_0)_{\rm a}$ satisfying the alarm msg. constr.?

1. Find $(E_{\rm b}/N_0)_{\rm s,min}$ assuming $n_{\rm s}=n$

•
$$n = 30\,000$$
, $(M_{\rm a}, M_{\rm s}) = (2^3, 2^{100})$, $1000 \le K \le 30\,000$, $\rho_{\rm s} = 0.01$

• $\max{\{\epsilon_{\rm smd}, \epsilon_{\rm sfp}\}} \le 10^{-1}$, $\max{\{\epsilon_{\rm amd}, \epsilon_{\rm afp}\}} \le 10^{-5}$

- 1. Find $(E_{
 m b}/N_0)_{
 m s,min}$ assuming $n_{
 m s}=n$
- 2. Set $(E_{\rm b}/N_0)_{\rm s} = (E_{\rm b}/N_0)_{\rm s,min} + \delta$ [dB] (backoff)

•
$$n = 30\,000$$
, $(M_{\rm a}, M_{\rm s}) = (2^3, 2^{100})$, $1000 \le K \le 30\,000$, $\rho_{\rm s} = 0.01$

• $\max{\{\epsilon_{\rm smd}, \epsilon_{\rm sfp}\}} \le 10^{-1}$, $\max{\{\epsilon_{\rm amd}, \epsilon_{\rm afp}\}} \le 10^{-5}$

- 1. Find $(E_{
 m b}/N_0)_{
 m s,min}$ assuming $n_{
 m s}=n$
- 2. Set $(E_{\rm b}/N_0)_{\rm s} = (E_{\rm b}/N_0)_{\rm s,min} + \delta$ [dB] (backoff)
- 3. Find smallest $n_{\rm s} \leq n$ satisfying standard msg. constr.

•
$$n = 30\,000$$
, $(M_{\rm a}, M_{\rm s}) = (2^3, 2^{100})$, $1000 \le K \le 30\,000$, $\rho_{\rm s} = 0.01$

• $\max{\{\epsilon_{\rm smd}, \epsilon_{\rm sfp}\}} \le 10^{-1}$, $\max{\{\epsilon_{\rm amd}, \epsilon_{\rm afp}\}} \le 10^{-5}$

- 1. Find $(E_{
 m b}/N_0)_{
 m s,min}$ assuming $n_{
 m s}=n$
- 2. Set $(E_{\rm b}/N_0)_{\rm s} = (E_{\rm b}/N_0)_{\rm s,min} + \delta$ [dB] (backoff)
- 3. Find smallest $n_{\rm s} \leq n$ satisfying standard msg. constr.
- 4. Find smallest $(E_{\rm b}/N_0)_{\rm a}$ by optimizing over $n_{\rm a} \le n n_{\rm s}$, $\rho_{\rm a} \le \rho_{\rm a,max}$ and $P_{\rm a}$

- $n = 30\,000$, $(M_{\rm a}, M_{\rm s}) = (2^3, 2^{100})$, $1000 \le K \le 30\,000$, $\rho_{\rm s} = 0.01$
- $\max{\{\epsilon_{\rm smd}, \epsilon_{\rm sfp}\}} \le 10^{-1}$, $\max{\{\epsilon_{\rm amd}, \epsilon_{\rm afp}\}} \le 10^{-5}$

- 1. Find $(E_{\rm b}/N_0)_{\rm s,min}$ assuming $n_{\rm s}=n$
- 2. Set $(E_{\rm b}/N_0)_{\rm s} = (E_{\rm b}/N_0)_{\rm s,min} + \delta$ [dB] (backoff)
- 3. Find smallest $n_{\rm s} \leq n$ satisfying standard msg. constr.
- 4. Find smallest $(E_{\rm b}/N_0)_{\rm a}$ by optimizing over $n_{\rm a} \leq n-n_{\rm s},\,\rho_{\rm a} \leq \rho_{\rm a,max}$ and $P_{\rm a}$

- $n = 30\,000$, $(M_{\rm a}, M_{\rm s}) = (2^3, 2^{100})$, $1000 \le K \le 30\,000$, $\rho_{\rm s} = 0.01$
- $\max{\{\epsilon_{\rm smd}, \epsilon_{\rm sfp}\}} \le 10^{-1}$, $\max{\{\epsilon_{\rm amd}, \epsilon_{\rm afp}\}} \le 10^{-5}$

- 1. Find $(E_{\rm b}/N_0)_{\rm s,min}$ assuming $n_{\rm s}=n$
- 2. Set $(E_{\rm b}/N_0)_{\rm s} = (E_{\rm b}/N_0)_{\rm s,min} + \delta$ [dB] (backoff)
- 3. Find smallest $n_{\rm s} \leq n$ satisfying standard msg. constr.
- 4. Find smallest $(E_{\rm b}/N_0)_{\rm a}$ by optimizing over $n_{\rm a} \leq n-n_{\rm s},\,\rho_{\rm a} \leq \rho_{\rm a,max}$ and $P_{\rm a}$

- $n = 30\,000$, $(M_{\rm a}, M_{\rm s}) = (2^3, 2^{100})$, $1000 \le K \le 30\,000$, $\rho_{\rm s} = 0.01$
- $\max{\{\epsilon_{\rm smd}, \epsilon_{\rm sfp}\}} \le 10^{-1}$, $\max{\{\epsilon_{\rm amd}, \epsilon_{\rm afp}\}} \le 10^{-5}$

- 1. Find $(E_{\rm b}/N_0)_{\rm s,min}$ assuming $n_{\rm s}=n$
- 2. Set $(E_{\rm b}/N_0)_{\rm s} = (E_{\rm b}/N_0)_{\rm s,min} + \delta$ [dB] (backoff)
- 3. Find smallest $n_{\rm s} \leq n$ satisfying standard msg. constr.
- 4. Find smallest $(E_{\rm b}/N_0)_{\rm a}$ by optimizing over $n_{\rm a} \leq n-n_{\rm s},\,\rho_{\rm a} \leq \rho_{\rm a,max}$ and $P_{\rm a}$

Optimal choice of parameters

- $\rho_{\rm a} = \rho_{\rm a,max}$
- $n_{\rm a}$ and $P_{\rm a}$ as low as possible

Optimal choice of parameters

- $\rho_{\rm a} = \rho_{\rm a,max}$
- $n_{\rm a}$ and $P_{\rm a}$ as low as possible

Superposition

Superposition

Decoder: reliability diversity

- Estimate $K_{\rm a}$ and $W_{\rm a}$; treat $\sum_{k=1}^{K_{\rm s}} \mathbf{x}_k$ as noise
- Interference cancellation $\mathbf{y}_{\mathrm{ic}} = \mathbf{y} \widehat{K}_{\mathrm{a}} \widehat{\mathbf{x}}_{\mathrm{a}}$
- Estimate $K_{\rm s}$ and ${\cal W}$ from ${f y}_{
 m ic}$; residual interference $K_{
 m a} {f x}_{
 m a} \widehat{K}_{
 m a} \widehat{f x}_{
 m a}$

Superposition

Decoder: reliability diversity

- Estimate $K_{\rm a}$ and $W_{\rm a}$; treat $\sum_{k=1}^{K_{\rm s}} \mathbf{x}_k$ as noise
- Interference cancellation $\mathbf{y}_{\mathrm{ic}} = \mathbf{y} \widehat{K}_{\mathrm{a}} \widehat{\mathbf{x}}_{\mathrm{a}}$
- Estimate $K_{\rm s}$ and ${\cal W}$ from ${f y}_{
 m ic}$; residual interference $K_{
 m a} {f x}_{
 m a} \widehat{K}_{
 m a} \widehat{f x}_{
 m a}$

Issue

Difficult to estimate $K_{\rm a}$ reliably in the presence of noise; imperfect interference cancellation

Performance: orthogonalization vs. superposition

Summary and further extensions

- Overview of information-theoretic bounds for mMTC
- Generalization to unknown number of active users and heterogeneous traffic

Further extensions and open problems

- Fading, massive MIMO, cell-free [Kowshik & Polyanskiy, 2021; Fengler et al. 2022; Decurninge et al. 2021; Gkagkos et al. 2023]
- Variable-length codes with stop feedback [Yavas et al. 2021]
- Imperfect synchronization [Decurninge et al. 2022, Fengler et al. 2023]
- Age of information [Munari 2021, Munari et al., 2023]
- Energy harvesting [Demirhan & Duman, 2019]