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Abstract—An error in the proof of the data-dependent tail
bounds on the generalization error presented in Hellström and
Durisi (2020) is identified, and a correction is proposed. Further-
more, we note that the absolute continuity requirements in Hell-
ström and Durisi (2020) need to be strengthened to avoid measur-
ability issues.

I. DATA-DEPENDENT BOUNDS IN [1, EQS. (26), (34), (95),
AND (98)]

In the proof of [1, Eq. (26)], we incorrectly claimed that [1,
Eq. (32)] implies [1, Eq. (26)]. The issue is that [1, Eq. (32)]
holds for a fixed λ, whereas, for [1, Eq. (26)] to hold, [1, Eq. (32)]
needs to hold uniformly over all λ ∈ R.

This issue can be fixed as follows. Since gen(w,Z) is σ/
√
n-

sub-Gaussian with zero mean under PZ for all w, we can apply
[2, Thm. 2.6.(IV)] (with λ = 1− 1/n therein) to conclude that

EPZ

[
exp

(
n− 1

2σ2
(gen(w,Z))2

)]
≤
√
n. (1)

Taking the expectation with respect to PW , changing measure
to PWZ , and rearranging terms, we obtain

EPWZ

[
exp

(
n− 1

2σ2
(gen(W,Z))2− log

√
n− ı(W,Z)

)]
≤ 1.

(2)
Proceeding as in [1, Cor. 2], with an additional use of Jensen’s
inequality, we find that with probability at least 1− δ under PZ ,∣∣EPW |Z [gen(W,Z)]

∣∣
≤

√
2σ2

n− 1

(
D(PW |Z ||PW ) + log

√
n

δ

)
. (3)

Similarly, proceeding as in the proof of [1, Eq. (34)], we find
that with probability at least 1− δ under PWZ̃S ,

|gen(W,Z)| ≤

√
2σ2

n− 1

(
ı(W,Z) + log

√
n

δ

)
. (4)

The issue reported in this note also affects the data-dependent
tail bounds for the random-subset setting reported in [1, Eqs. (95)
and (98)]. To fix it, we use that for any fixed (w, z̃), the random
variable ĝen(w, z̃,S) is 1/

√
n-sub-Gaussian with zero mean

F. Hellström and G. Durisi are with the Department of Electrical Engi-
neering, Chalmers University of Technology, Gothenburg, Sweden, (e-mail:
{frehells,durisi}@chalmers.se).

under PS . Applying [2, Thm. 2.6.(IV)] with λ = 1 − 1/n we
obtain

EPS

[
exp

(
n− 1

2
(ĝen(w, z̃,S))2

)]
≤
√
n. (5)

Taking the expectation with respect to PWZ̃ , changing measure
to PWZ̃S , and rearranging terms, we conclude that

EPWZ̃S

[
exp

(
n− 1

2
(ĝen(W, Z̃,S))2

− log
√
n− ı(W,S|Z̃)

)]
≤ 1. (6)

Proceeding as in [1, Cor. 6], we conclude that with probability
at least 1− δ under PZ̃S ,

EPW |Z̃S

[
ĝen(W, Z̃,S)

]
≤

√
2

n− 1

(
D(PW |Z̃S ||PW |Z̃) + log

√
n

δ

)
. (7)

Furthermore, with probability at least 1− δ under PWZ̃S ,∣∣∣ĝen(W, Z̃,S)
∣∣∣ ≤

√
2

n− 1

(
ı(W,S|Z̃) + log

√
n

δ

)
. (8)

To summarize, the data-dependent tail bounds reported in [1,
Eqs. (26), (34), (95), and (98)] should be replaced with (3), (4),
(7), and (8) respectively.

Note that the data-independent tail bounds that we provide
in [1, Eqs. (27), (35), (41), (42), (96), (99), (101), and (102)]
still hold verbatim, although their proofs need to be modified.
Specifically, for a fixed λ, one needs to first replace the informa-
tion measure appearing in the bounds with its data-independent
relaxation. The desired bounds then follow by setting λ equal
to a suitably chosen, data-independent constant. Consider for
example the data-independent bound in [1, Eq. (27)]. To obtain
it, we first use [1, Eq. (33)] in [1, Eq. (32)], which results in

PZ

[
λ2σ2

2n
−λEPW |Z [gen(W,Z)]+

E1/t
PZ

[
D(PW |Z ||PW )t

]
δ1/t

+ log
1

δ
≥ 0

]
≥ 1− 2δ. (9)

The desired result follows by setting λ = ±
√

a
b , where a =

E1/t
PZ

[
D(PW |Z ||PW )t

]
/δ1/t + log 1

δ and b = σ2/(2n), and
then replacing δ with δ/2.
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II. ABSOLUTE CONTINUITY ASSUMPTION

In the statement of [1, Thm. 1], we assumed that PWZ �
PWPZ . To avoid measurability issues, we should also assume
that PWPZ � PWZ . Similarly, in [1, Thm. 4], we should also
assume that PW |Z̃PZ̃PS � PWZ̃S .
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