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I. PRELIMINARIES

Let Z1,...,Z, be independent and identically distributed, real-valued, zero-mean random variables. Let m(7) =
E[e7#!] be the moment-generating function of these random variables and (1) = logm() be the cumulant-
generating function. We use the notation m’, m” and m’” to denote the first three derivatives of m(7). Similarly,
', 4", and 9" denote the first three derivatives of (7).

A random variable Z is said to be lattice if it is supported on the points b, b+ h, b+ 2h, ... for some b and h. A
random variable that is not lattice will be referred to as nonlattice. Throughout, we will focus only on nonlattice
random variables. Finally, we will denote by (Q)(-) the Gaussian Q function:

Qz) = jz? Zexp <—“22> du.

II. THE SADDLEPOINT EXPANSION
The goal is to estimate accurately the tail probability
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for some ~ > 0, in the regime in which both the central-limit theorem and the large-deviation bound provided by
Chernoff inequality provide loose estimates.
The saddlepoint method [1] yields such an accurate estimate. The resulting expansion is given below. A self-
contained proof (for a slightly more general setup) can be found in, e.g., [2, App. LA].

Theorem 1 (saddlepoint approximation): Let the zero-mean i.i.d. random variables {Z,}}_, be nonlattice. Suppose
that there exists a 7 > 0 and a 7 < 0 such that

sup |m”’(7’)’ < 00
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and
inf ¢"(1) > 0.
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Then, if v > 0 and the solution to the stationary equation /(1) = v gives a 7 € [0,7], we have
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where
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and o(1/y/n) comprises terms that vanish faster than 1/y/n and are uniform in 7, i.e.,
1
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A. Remarks

Here is the intuition behind the saddlepoint approximation. One performs the usual exponential tilting on the
distribution of Z that is needed to prove the achievability of large-deviation exponent [¢)(7) — T¢'(7)] (see e.g., [3,
Ch. 5.11]). This allows one to pull out of the integral the exponential term. The pre-exponential factor is computed
by approximating the distribution of the average of the tilted random variables by a Gaussian distribution using the
central-limit theorem.

ITI. NUMERICAL EXAMPLE

Assume that the {Z,}}"_, are independent Gammal(k, #)-distributed random variables, i.e., their probability density
function is given by: )
— k—1_—z/0
fz(x) I‘(k)@k‘x e Y.

Then their sum is Gamma(nk, 6)-distributed. Hence, the tail probability
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can be easily evaluated numerically. We want to compare the approximation obtained using the saddlepoint method,
as well as the normal approximation resulting from the central limit-theorem
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where = E[Z1] and 0% = Var[Z;], and the Chernoff bound

(=1
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where 7 is the solution of ¢/(7) = ~.

Throughout, we set k = 4, § = 1, and n = 100. It then follows that y = o2 = 4. Furthermore, (1) =
—4log(1 — 7). Hence, for all v > 4, /(1) =~ if 7 =1—4/~.

In the figure we compare the exact tail probability with the normal approximation (2), the Chernoff bound (3)
and the saddle-point approximation in Theorem 1, obtained by neglecting the o(1/y/n) term in (1). As expected,
the normal approximation is accurate for values of  close to the mean, and the Chernoff bound captures the correct
slope of decay of the error probability. The saddlepoint expansion is accurate over the entire range of  values
considered in the figure.
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Fig. 1. The probability P[}_;_, Z; > n~] as a function of . The Z, are independent Gamma(4,1) random variables. The exact tail
proability is compared with the normal approximation (2), the Chernoff bound (3), and the saddle-point approximation in Theorem 1.
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