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Notes on the saddlepoint expansion
Giuseppe Durisi and Alejandro Lancho

I. PRELIMINARIES

Let Z1, . . . , Zn be independent and identically distributed, real-valued, zero-mean random variables. Let m(τ) =
E
[
eτZ1

]
be the moment-generating function of these random variables and ψ(τ) = logm(τ) be the cumulant-

generating function. We use the notation m′, m′′ and m′′′ to denote the first three derivatives of m(τ). Similarly,
ψ′, ψ′′, and ψ′′′ denote the first three derivatives of ψ(τ).

A random variable Z is said to be lattice if it is supported on the points b, b± h, b± 2h, . . . for some b and h. A
random variable that is not lattice will be referred to as nonlattice. Throughout, we will focus only on nonlattice
random variables. Finally, we will denote by Q(·) the Gaussian Q function:

Q(x) =
1√
2π

∞∫

x

exp

(
−u

2

2

)
du.

II. THE SADDLEPOINT EXPANSION

The goal is to estimate accurately the tail probability

P

[
1

n

n∑

`=1

Z` > γ

]

for some γ > 0, in the regime in which both the central-limit theorem and the large-deviation bound provided by
Chernoff inequality provide loose estimates.

The saddlepoint method [1] yields such an accurate estimate. The resulting expansion is given below. A self-
contained proof (for a slightly more general setup) can be found in, e.g., [2, App. I.A].

Theorem 1 (saddlepoint approximation): Let the zero-mean i.i.d. random variables {Z`}n`=1 be nonlattice. Suppose
that there exists a τ > 0 and a τ < 0 such that

sup
τ∈[τ ,τ ]

∣∣m′′′(τ)
∣∣ <∞

and
inf

τ∈[τ ,τ ]
ψ′′(τ) > 0.

Then, if γ ≥ 0 and the solution to the stationary equation ψ′(τ) = γ gives a τ ∈ [0, τ ], we have

P

[
n∑

`=1

Z` ≥ nγ
]

= en[ψ(τ)−τψ
′(τ)]

[
Ψ(τ, n) +

K(τ, n)√
n

+ o

(
1√
n

)]
. (1)

where

Ψ(τ, n) = en
u2

2
ψ′′(τ)Q

(
u
√
nψ′′(τ)

)

K(τ, n) =
ψ′′′(τ)

6ψ′′(τ)3/2

(
− 1√

2π
+
u2nψ′′(τ)√

2π
− u3ψ′′(τ)3/2n3/2Ψ(τ, n)

)

and o(1/
√
n) comprises terms that vanish faster than 1/

√
n and are uniform in τ , i.e.,

lim
n→∞

sup
τ∈[0,τ0)

o(1/
√
n)

1/
√
n

= 0.



2

A. Remarks

Here is the intuition behind the saddlepoint approximation. One performs the usual exponential tilting on the
distribution of Z that is needed to prove the achievability of large-deviation exponent [ψ(τ)− τψ′(τ)] (see e.g., [3,
Ch. 5.11]). This allows one to pull out of the integral the exponential term. The pre-exponential factor is computed
by approximating the distribution of the average of the tilted random variables by a Gaussian distribution using the
central-limit theorem.

III. NUMERICAL EXAMPLE

Assume that the {Z`}n`=1 are independent Gamma(k, θ)-distributed random variables, i.e., their probability density
function is given by:

fZ(x) =
1

Γ(k)θk
xk−1e−x/θ.

Then their sum is Gamma(nk, θ)-distributed. Hence, the tail probability

P

[
n∑

`=1

Z` > nγ

]

can be easily evaluated numerically. We want to compare the approximation obtained using the saddlepoint method,
as well as the normal approximation resulting from the central limit-theorem

P

[
n∑

`=1

Z` ≥ nγ
]
≈ Q

(
n(µ− γ)√

nσ2

)
(2)

where µ = E[Z1] and σ2Z = Var[Z1], and the Chernoff bound

P

[
n∑

`=1

Z` ≥ nγ
]
≤ en[ψ(τ)−τψ′(τ)] (3)

where τ is the solution of ψ′(τ) = γ.
Throughout, we set k = 4, θ = 1, and n = 100. It then follows that µ = σ2 = 4. Furthermore, ψ(τ) =

−4 log(1− τ). Hence, for all γ > 4, ψ′(τ) = γ if τ = 1− 4/γ.
In the figure we compare the exact tail probability with the normal approximation (2), the Chernoff bound (3)

and the saddle-point approximation in Theorem 1, obtained by neglecting the o(1/
√
n) term in (1). As expected,

the normal approximation is accurate for values of γ close to the mean, and the Chernoff bound captures the correct
slope of decay of the error probability. The saddlepoint expansion is accurate over the entire range of γ values
considered in the figure.
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Fig. 1. The probability P[
∑n

`=1 Z` ≥ nγ] as a function of γ. The Z` are independent Gamma(4, 1) random variables. The exact tail
proability is compared with the normal approximation (2), the Chernoff bound (3), and the saddle-point approximation in Theorem 1.
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