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Abstract—We present an upper bound on the error probability
achievable using variable-length stop-feedback codes, for a fixed
size of the information payload and a given constraint on both
the average and the maximum latency. Differently from the bound
proposed in Polyanskiy et al. (2011), which pertains to the sce-
nario in which the stop signal is sent over a noiseless feedback
channel, our bound applies to the practically relevant scenario in
which the feedback link is noisy. Through numerical results, we
illustrate that, in scenarios in which the desired average latency is
small, noise in the feedback link can deteriorate the performance
of variable-length stop-feedback codes to the extent that it be-
comes comparable to that of fixed-length codes without feedback.

I. INTRODUCTION

Variable-length stop-feedback (VLSF) coding schemes, i.e.,
schemes such as simple automatic repeat request (ARQ) and
hybrid ARQ, in which information is transmitted until the re-
ception of a positive acknowledgment, are ubiquitous in modern
wirelss communication systems. This is because they offer a
simple yet effective way to adapt the transmission rate to the
channel conditions.

The question investigated in this paper is whether such
schemes are suitable for ultra-reliable low-latency communi-
cations (URLLC)—one of the new use cases in next-generation
wireless systems (5G). VLSF coding schemes are attractive be-
cause, as shown in [1], they approach capacity much faster in the
average blocklength than fixed-length codes without feedback.
Mathematically, one can show that the dispersion of suitably
designed VLSF coding schemes is zero (see [1, Thm. 2 and
Thm. 3]). However, the result obtained in [1] pertains to the
setup in which the feedback latency is ignored, and the feedback
link is assumed noiseless. As argued in, e.g., [2], [3] these two
assumptions are not suitable for URLLC.

The impact of the feedback-link latency on performance in
a URLLC setup has been recently investigated in [4], [5] for
the case of noiseless feedback. However, most of the available
analyses dealing with the noisy-feedback case are asymptotic
in the average blocklength (see, e.g., [6]) and cannot be used to
infer design guidelines for URLLC. One exception is [7] where
the simulated frame-error rate of an actual VLSF code is used
within a theoretical framework that captures the impact of errors
in the feedback link.
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As discussed in [8] in the context of error-exponent analyses
of variable-length coding schemes with full feedback (rather than
stop feedback, which is the focus of this paper), one challenge
that arises when the feedback is noisy is that the transmitter and
the receiver may fall out of synchronization and start operating
on different messages. The analysis in [8] shows that one can
construct a variable-length coding scheme for the full-feedback
case that is robust against noise and synchronization errors. More
precisely, the corresponding error exponent, although smaller
than the error exponent for the variable-length noiseless full-
feedback case [9], is still larger than the sphere-packing bound,
which governs the performance of fixed-length coding schemes
without feedback.

Contributions: We present a non-asymptotic random-
coding upper bound on the error probability achievable using
VLSF coding schemes, for a given size of the information
payload and for a given constraint on both the average and the
maximum latency. Differently from the bound in [1, Thm. 3],
our bound pertains to the setup in which both the forward and
the feedback link are noisy. Furthermore, our analysis accounts
for the feedback latency, and accommodates for the presence of
a constraint on the maximum number of transmission rounds.

We use the bound derived in this paper to study the perfor-
mance of VLSF coding schemes operating over a binary-input
AWGN channel, focusing on the URLLC-relevant regime in
which both the information payload and the average latency
are small. Our results indicate that the presence of noise on the
feedback link causes a significant degradation in the performance
of VLSF codes. For example, when the size of the information
payload is 30 bits and both forward and feedback channels
operate at 0 dB of SNR, the error probability achievable for
an average latency of 110 channel uses is 10−5 if the feedback
link is assumed ideal but only 10−2 if errors on the feedback link
are accounted for. For such a scenario, the performance of the
VLSF code becomes comparable to that of a fixed-blocklength
no-feedback coding scheme.

Notation: Upper case letters are used to denote random
vectors, e.g., X and their realizations are written in lower case,
e.g.,x. We use superscripts to denote the concatenation of vectors
of equal size, e.g., Xν = [X1, . . . ,Xν ]. The distribution of a
real Gaussian random variable with mean µ and variance σ2

is denoted by N
(
µ, σ2

)
. Finally, the expectation operator is

denoted by E[·], P[·] is used for probabilities, 1{·} denotes the
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Ŵ

Fig. 1: Round ν of the variable-length noisy stop-feedback transmission scheme. Here W denotes the information message, Ŵ is its estimate at
the receiver, Fν is the feedback bit computed at the receiver, and F̂ν its estimate at the transmitter.

indicator function, and Q(·) stands for the Gaussian Q-function.

II. SYSTEM MODEL

We consider a point-to-point communication system in which
information is transmitted using a VLSF coding scheme. Specif-
ically, transmission occurs over a variable number of rounds,
where each round is divided into a data phase and a feedback
phase, not necessarily of equal duration. Throughout, we assume
that the number of transmission rounds does not exceed the
integer `m <∞.

In the data phase, a segment (spanning n channel uses) of the
codeword associated to the current information message is sent
to the receiver over the forward channel. The forward channel
is modeled as a sequence of conditional probability kernels
{PYν |Y ν−1,Xν}`mν=1, where the random vectors Yν and Xν ,
ν = 1, . . . , `m, take values on the sets Yn and Xn, respectively.

At the end of each data phase, the receiver decides whether
to perform decoding based on the channel outputs received that
far, or to request an additional transmission. The outcome of this
decision—a single bit of information conveying the message
“stop”, which we denote by s or “continue”, which we denote by
c is transmitted in the feedback phase over the feedback channel
using nf channel uses. We model the feedback channel as a
sequence of conditional probability kernels {PȲν |Ȳ ν−1,X̄ν}`mν=1,
where the random vectors Ȳν and X̄ν , ν = 1, . . . , `m, take
values on the sets Ȳnf and X̄nf , respectively. We assume for
simplicity that the feedback channel is block-wise stationary
and memoryless, i.e.,

PȲν |Ȳ ν−1,X̄ν (ȳν |ȳν−1, x̄ν) = PȲ |X̄(ȳν |x̄ν). (1)

Upon observing the output of the feedback channel, the
transmitter decides whether s or c was sent. This implies that the
feedback channel can be viewed as a binary asymmetric channel,
with crossover probabilities psc = P[s→ c] and pcs = P[c→ s],
which depend both on nf and on the encoder-decoder pair used
to transmit the binary message over the feedback channel.

To emphasize that our setup allows for errors in the feedback
link, we denote the VLSF coding scheme just described, and de-
picted in Fig. 1, as variable-length noisy stop-feedback (VLNSF)
coding scheme.

Some remarks on our setup are in order. We allow for psc 6=
pcs since the s→ c and the c→ s events have a different impact
on performance. Indeed, the c→ s event causes the premature
stop of the transmission of the current message. We assume,

perhaps pessimistically, that this always results in an error at
the decoder. This error needs to be handled by higher layers,
hence causing a significant latency increase. On the contrary,
the s→ c event triggers an unnecessary additional transmission
round, which causes only a moderate increase in latency. Treating
these two error events on the feedback channel differently is in
agreement with current wireless standards, where one typically
sets pcs � psc. For example, in long term evolution (LTE),
psc = 10−2 whereas pcs ∈ [10−4, 10−3] [10].

Note that an error on the feedback channel may result in the
transmitter and the receiver falling out of synchronization, i.e.,
operating on different messages. To prevent this, we assume that
the receiver has also access to an error-free control channel that is
used by the transmitter to indicate whether a codeword segment
corresponding to the current message or to a new message is to
arrive at the receiver. Note that this is again in line with current
wireless communication standards such as LTE [10, p. 249].
From a modeling perspective, this is equivalent to assuming that
the noisy estimate of the feedback bit produced at the transmitter
is known to the receiver.

In our setup, a transmission error occurs if
• The receiver decides to perform decoding but produces the

wrong codeword estimate—an event typically referred to
as undetected error. This event is shown in Fig. 2a along
with an s → c event, which does not cause an error, but
increases latency.

• A c→ s event occurs on the feedback channel, see Fig. 2b.
• The receiver is not able to perform decoding within the

available `m rounds, see Fig. 2c.
In the last two cases, the decoder declares an erasure, which we
denote by the symbol e.

A. Definition of a VLNSF Code

Before providing a formal definition of a VLNSF code, we
introduce some additional notation. We let Fν ∈ {s, c} be the
feedback bit generated by the receiver in round ν = 1, . . . , `m
and F̂ν ∈ {s, c} its estimate at the transmitter.

We are interested in the trade-off between error probability
and average latency, which we define as the average number of
rounds needed by the transmitter to complete the processing of
the current message. Note that in the presence of errors on the
feedback link, the number of rounds after which the receiver
produces an estimate of the transmitted message (or declares
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Fig. 2: Example of the three types of error events for `m = 3.

an erasure) does not necessarily coincide with the number of
transmission rounds (see Fig. 2a). Our definition of latency is
relevant in a full-buffer situation, where the long-term throughput
is defined as the ratio between the number of bits necessary to
represent a message, and the average latency defined as above, as
a consequence of the renewal-reward theorem [11, Th. 10.5.1].

The definition of a VLNSF coding scheme provided below is
an adaptation to the noisy feedback case of the definition of a
VLSF coding scheme given in [1].

Definition 1: An (`a,M, ε, `m)-VLNSF coding scheme where
M , `m are positive integers, `a is a nonnegative real number, and
ε ∈ (0, 1), consists of

• A random variable U defined on a set U of cardinality
|U| ≤ 2 that is revealed to both the transmitter and the
receiver before the start of the transmission. This random
variable acts as common randomness and allows for the use
of randomized encoding and decoding strategies.

• A sequence of `m encoders for the forward channel fν :
U ×{1, . . . ,M} → Xn, ν = 1, . . . , `m, defining the input

Xν = fν(U,W ) (2)

for a given message W , which we assume to be uniformly
distributed over {1, . . . ,M}.

• A sequence of `m decoders for the forward channel gν :
U × Ynν → {1, . . . ,M}, ν = 1, . . . , `m, providing an
estimate gν(U,Y ν) of the message W .

• A sequence of binary random variables Fν ∈ {s, c}, ν =
1, . . . , `m, which are the output of a stopping rule defined
on the filtration σ(U,Y1, . . .Yν). These random variables
are the binary messages transmitted by the receiver on the
feedback channel.

• An encoder for the feedback channel f̄ : {s, c} → X̄nf

defining the input X̄ν = f̄(Fν) at round ν = 1, . . . , `m.
• A decoder for the feedback channel ḡ : Ȳnf → {s, c} that

produces the estimate F̂ν = ḡ(Ȳν) at round ν.
• A stopping time at the transmitter τtx and a message esti-

mate Ŵ ∈ {1, . . . ,M} ∪ e defined through the procedure
detailed in Algorithm 1, which satisfy the average latency
constraint

E[τtx] ≤ `a (3)

and the error probability constraint

P
[
Ŵ 6= W

]
≤ ε. (4)

Some remarks are in order. Compared to the definition of
VLSF codes provided in [1], our definition involves two stopping
times (see Algorithm 1), one at the transmitter and one at the
receiver. This is needed to account for errors on the feedback link.
Also, the decoder employs an erasure option, which is used if a
c→ s event occurs, or if the stopping rule is not triggered after
`m rounds. Note that we measure the latency in transmission
rounds. Each transmission round involves n channel uses on the
forward channel and nf channel uses on the feedback channel.

III. MAIN RESULT

We provide an achievability bound, i.e., an upper bound
on the error probability achievable using a VLNSF code (see
Definition 1), for a fixed number of messagesM , a fixed average
latency `a, and a fixed maximum latency `m.

Before presenting our bound, we characterize the pairs (psc =
P[s→ c] , pcs = P[c→ s]) that are achievable for a given choice
of the encoder for the feedback channel.

Lemma 1: For a given nf and for a given encoder f̄ : {s, c} →
X̄nf for the feedback channel, all pairs (psc, pcs) in the convex
hull of the union on the following two sets are achievable⋃

γf∈R∪{±∞}

(
P (s)

[
dP (c)

dP (s)
> γf

]
, P (c)

[
dP (c)

dP (s)
≤ γf

])
(5)

and ⋃
γf∈R∪{±∞}

(
P (s)

[
dP (c)

dP (s)
≥ γf

]
, P (c)

[
dP (c)

dP (s)
< γf

])
(6)

where P (c) = PȲ |X̄=f̄(c) and P (s) = PȲ |X̄=f̄(s).
Proof: The result follows from a direct application of the

Neyman-Pearson lemma [12].
We present next our achievability bound, which generalizes [1,

Thm. 3] to the case of noisy feedback and finite maximum
number of transmission rounds.

Theorem 1: Let (psc, pcs) be an achievable pair according to
Lemma 1 for a given choice of nf and encoder for the feedback
channel. Assume that 0 ≤ psc + pcs ≤ 1. Fix `m, n and a
scalar γdec > 0. Let (X1,X2, . . . ) be an arbitrary stochastic



Algorithm 1 Procedure at the transmitter and the receiver to
compute the message estimate Ŵ , the transmitter stopping
time τtx and the receiver stopping time τrx.

Initialize:
τtx = τrx =∞; F0 = F̂0 = c;

for ν = 1→ `m do
Transmitter:
if ν > 1 then

compute F̂ν−1 = ḡ(Ȳν−1)
end if
if F̂ν−1 = c then

transmit fν(U,M) over the forward channel
if ν = `m then

set τtx = ν
end if

else
set τtx = ν − 1

end if
Receiver:
if Fν−1 = s then

if F̂ν−1 = c then
set Fν = s

else
STOP

end if
else

if F̂ν−1 = s then
set Ŵ = e, τrx = ν
STOP

else
use stopping rule to compute Fν
if Fν = s then

set Ŵ = gν(Y ν , U), τrx = ν
end if

end if
end if
if ν < `m then

send f̄(Fν) on the feedback channel
else

if τrx =∞ then
set Ŵ = e, τtx = `m

end if
end if

end for

process where Xν ∈ Xn for every nonnegative integer ν. Define
a probability space with distribution

PXν ,Y ν ,X̃ν (xν ,yν , x̃ν)

= PXν (xν)PXν (x̃ν)

ν∏
i=1

PYi|Xi,Y i−1

(
yi|xi,yi−1

)
, (7)

a sequence of information density functions X νn × Yνn → R

ıν(xν ,yν) = log
dPY ν |Xν (yν |xν)

dPY ν (yν)
, ν = 1, 2, . . . (8)

and two stopping times

τ = inf{ν ≥ 1 : ıν(Xν ,Y ν) ≥ γdec}, (9)

τ̃ = inf{ν ≥ 1 : ıν

(
X̃ν ,Y ν

)
≥ γdec}. (10)

Then, there exists an (`a,M, ε, `m)-VLNSF code with

`a ≤
`m−1∑
ν=0

(Hν+1 −Hν) P[τ > ν] , (11)

ε ≤
`m∑
ν=1

ξν

(
ανP[τ > ν] + (M − 1) P[τ ≥ ν, τ̃ = ν]

)
(12)

whereαν = pcs for ν = 1, . . . , `m−1 andα`m = 1; furthermore,
ξν = (1− pcs)

ν−1 and

Hν =

ν−1∑
k=1

kξkpcs+ξν

[
`m−1∑
k=ν

kpk−νsc (1−psc) +`mp
`m−ν
sc

]
(13)

for ν = 1, . . . , `m, whereas H0 = 0.
Proof: See Appendix A.

Some remarks about our achievability bound are in order.
As discussed in Appendix A, our bound is based on a decoder
that tracks the accumulated information density between each
codeword and the received signal, and triggers the stopping
rule whenever the accumulated information density exceeds
the threshold γdec. The random variable τ in (9) denotes the
first round in which the information density corresponding to
the desired codeword exceeds the threshold, whereas τ̃ in (10)
denotes the first round in which a codeword different from the
transmitted one exceeds the threshold. Clearly, the event τ > τ̃
will correspond to an undetected error, provided that τ̃ ≤ `m
and no c→ s error has occurred in the previous rounds. This is
captured by the second term in the error-probability bound (12).
The first term in (12) captures instead the error resulting from
a c → s event. Note that one can recover [1, Thm. 3] from
Theorem 1 by setting psc = pcs = 0 and letting `m →∞.

IV. NUMERICAL RESULTS

We show in this section how one can use the achievability
bound in Theorem 1 to design a short-packet transmission system
operating over a wireless channel. Although our framework is
general, we shall consider for simplicity the case in which both
the forward and the feedback channel are real-valued binary-
input AWGN channels with same SNR.

We assume that the additive noise has unit variance and that
each transmit symbol belongs to the alphabet {−√ρ,√ρ}, where
ρ denotes the SNR. We also assume that the feedback channel
assigns the nf dimensional vector [

√
ρ, . . . ,

√
ρ] to the message s

and [−√ρ, . . . ,−√ρ] to c. Under these assumptions,

psc = Q(
√
nfρ+ γf) (14)

pcs = Q(
√
nfρ− γf) . (15)



The bound in Theorem 1 is evaluated for a stationary mem-
oryless input process with marginal distribution uniform over
{−√ρ,√ρ}. For such a distribution, (8) reduces to

ıν(Xν ,Y ν) ∼
νn∑
i=1

log 2− log(1 + exp(−2Zi)) (16)

where Zi ∼ N (ρ, ρ). Since evaluating (12) directly is challeng-
ing, we use the following upper bound

P[τ ≥ ν, τ̃ = ν] ≤ P[τ̃ = ν] (17)
= E[exp(−ıν(Xν ,Y ν)) 1{τ = ν}] . (18)

The last step follows from a change of measure (see [1,
Eq. (110)]).

In our numerical simulations, we fix the number of channel
uses per transmission round ntot = n + nf and the maximum
number of transmission rounds `m. For a given number of infor-
mation bits log2M , we use Theorem 1 to obtain an upper bound
on the error probability ε achievable for a given average number
of transmission rounds `a, and, hence, for a given average latency
`antot. The error probability is minimized over the Neyman-
Pearson threshold γf in Lemma 1, and over the number of
feedback symbols nf, under the constraint that n+ nf = ntot.

In Fig. 3, we assume a maximum latency of `mntot = 400
channel uses. We consider both the case ntot = 25, for which the
maximum number `m of transmission rounds is 16 and the case
ntot = 50, for which `m = 8. For comparison, we plot the error
probability achievable for the case of noiseless feedback, for
which the choice nf = 1 is optimal. We also illustrate an upper
bound on the error probability obtained using a fixed-length code
(no feedback) of blocklength `mntot. Specifically, we use the
bound provided in [13, Eq. (95)].

Our results illustrate the deleterious effect of noise on the
feedback channel on the performance of VLSF coding schemes.
Consider for example a target error probability ε = 10−5. For
the case of a noiseless feedback link, the minimum average
latency obtainable with a VLSF scheme is 111 channel uses when
ntot = 25 and 117 channel uses when ntot = 50. When noise in
the feedback link is accounted for, though, the average latency
increases to 141 and 153 channel uses, respectively. These values
are similar to the blocklength required by a fixed-length coding
scheme to operate at ε = 10−5, which is 149 channel uses. The
performance degradation of the VLSF coding scheme is caused
by the resources that need to be allocated to the feedback link
to decrease the frequency of c→ s and s→ c errors.

Specifically, to achieve ε = 10−5 with minimum average
latency for the case ntot = 25, one needs to set nf = 8 and
γf = −2.13 . This results in psc = 0.24 and pcs = 3.55× 10−7.
For the casentot = 50, one needs to setnf = 10 and γf = −1.65,
which results in psc = 0.065 and pcs = 7.46 × 10−7. Note
that in both cases, the threshold γf is chosen so that the c→ s
event occurs with much smaller probability than the s → c
event. Indeed, since in our setup the c → s event results in an
error, its probability must always be smaller than the target error
probability 10−5.

Observe that noise in the feedback link is actually helpful for
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Fig. 3: VLNSF performance over the real–input binary AWGN channel
for different resource allocations. The VLNSF curves are optimized
over nf and γf and nf = 1 for the VLSF curves.

the type of decoder used in the achievability bound when the
average latency is small and the error probability is high. Indeed,
in this regime the occurrence of c → s errors allows one to
set a higher decoding threshold γdec compared to the noiseless
feedback case, which reduces undetected errors.

V. CONCLUSION

We have generalized the achievability bound for VLSF coding
schemes presented in [1, Thm. 3] to the case in which the
feedback channel is noisy. Our numerical results for the bi-
AWGN channel, illustrate that, in some regimes, the performance
gain of VLSF coding schemes over fixed length transmission is
reduced significantly once the assumption of a noiseless feedback
link is dropped.

APPENDIX A
PROOF OF THEOREM 1

Similar to [1, Thm. 3], we define a random variable U on the
set1

U = X∞ × · · · × X∞︸ ︷︷ ︸
M times

(19)

with probability mass function

PU = PX∞ × · · · × PX∞︸ ︷︷ ︸
M times

(20)

where PX∞ denotes the distribution of the process
{X1,X2, . . . }. Each realization of U produces M infinite-
dimensional codewords [C1(w),C2(w), . . . ], w = 1, . . . ,M
where each codeword segment Cν(w) belongs to Xn,
n = 1, 2, . . . The encoder fν maps the message w to the
codeword segment Cν(w). As detailed in Algorithm 1, the

1Similar to [14, Section II] (see also [1, Thm. 19]) one can reduce the
cardinality of this random variable to 2.



transmitter is also equipped with a stopping rule, which defines
a stopping time τtx as follows:

τtx = min{`m,min{ν : F̂ν = s}}. (21)

Here, we use the convention that the minimum of an empty set
is∞.

At the decoding side, we consider the following stopping rule:
stop at round ν if ıν(Cν(w),Y ν) ≥ γdec for some w. Let now

τw=inf{ν : ıν(Cν(w),Y ν) ≥ γdec} (22)

and let

τdec = min{τ1, . . . , τM} . (23)

Finally, let2

τrx = min{τdec, τtx} (24)

be the stopping time at the decoder. If τrx = τdec, the decoder
sets Ŵ = max{w : τw = τdec}. Otherwise it sets Ŵ = e.
In words, if no codeword results in a threshold crossing or a
c→ s error occurs, an erasure is declared. Otherwise, the index
of the codeword that resulted in a threshold crossing is taken as
message estimate. If more than one codeword yields a threshold
crossing, the codeword with the largest index is chosen.

We next prove that E[τtx] can be upper-bounded as in (11).
Set H0 = 0 and Hν = E[τtx|τdec = ν]. One can show that for
ν = 1, . . . , `m − 1, the conditional expectation Hν takes the
form given in (13), whereas for ν ≥ `m

Hν =

`m∑
k=1

k(1− pcs)
k−1pcs + `m(1− psc)`m−1. (25)

Note that this quantity does not depend on ν. We next evaluate
E[τtx] as follows

E[τtx] =

∞∑
ν=1

HνP[τdec = ν] (26)

=

∞∑
ν=1

Hν (P[τdec > ν − 1]− P[τdec > ν]) (27)

=

∞∑
ν=0

(Hν+1 −Hν)P[τdec > ν] (28)

=

`m−1∑
ν=1

(Hν+1 −Hν)P[τdec > ν] . (29)

In the last step we used that Hν+1 = Hν for all ν ≥ `m as a
consequence of (25). Note now that H1 > H0 by definition and
that, for ν = 1, . . . , `m − 1,

Hν+1 −Hν =
(1− psc − pcs) (1− pcs)

ν−1

psc

×

[
`m−1∑
k=ν

kpk−νsc (1− psc) + `mp
`m−ν
sc − ν

]
(30)

2Recall that the decoder is assumed to know the estimate at the transmitter of
the feedback bit through a control channel that announces the presence of new
packets. This allows the decoder to learn the stopping time τtx.

=
(1− psc − pcs) (1− pcs)

ν−1 (
1− p`m−νsc

)
1− psc

. (31)

This implies that Hν+1 −Hν ≥ 0 whenever psc + pcs ≤ 1. To
obtain the desired result, we notice that

P[τdec > ν] ≤ 1

M

M∑
w=1

P[τw > ν|W = w] = P[τ > ν] (32)

where τ is defined in (9).

We now prove (12). First note that

ε =
1

M

M∑
w=1

P
[
Ŵ 6= w|W = w

]
(33)

≤ P
[
Ŵ 6= 1|W = 1

]
(34)

=

`m∑
ν=1

P
[
τrx = ν, Ŵ 6= 1|W = 1

]
. (35)

Next, we decompose each term on the right-hand-side of (35) as

P
[
τrx = ν, Ŵ 6= 1|W = 1

]
= P[τtx = ν, τdec > ν, |W = 1]

+P
[
τtx ≥ ν, τdec = ν, Ŵ 6= 1|W = 1

]
(36)

= P[τtx = ν|τdec > ν,W = 1] P[τdec > ν|W = 1]

+P
[
τtx ≥ ν|τdec = ν, Ŵ 6= 1,W = 1

]
×P
[
τdec = ν, Ŵ 6= 1|W = 1

]
. (37)

The first term on the right-hand side of (37) is the probability
that an erasure is declared at step ν because of a c→ s event or
because the maximum number of transmission round is exceeded.
The second term on the right-hand side of (37) corresponds to
the probability of an undetected error. Observe now that

P[τdec > ν|W = 1] ≤ P[τ > ν] . (38)

Furthermore,

P
[
τdec = ν, Ŵ 6= 1|W = 1

]
= P

[
∪Mm=2{τ1 ≥ ν, τm = ν} |W = 1

]
(39)

≤ (M − 1) P[τ1 ≥ ν, τ2 = ν|W = 1] (40)
= (M − 1) P[τ ≥ ν, τ̃ = ν] (41)

where τ̃ is defined in (10). Finally, we have that

P
[
τtx ≥ ν|τdec = ν, Ŵ 6= 1,W = 1

]
= (1− pcs)

ν−1 (42)

and that

P[τtx = ν|τdec > ν,W = 1] = (1− pcs)
ν−1

pcs (43)

for ν = 1, . . . , `m − 1, whereas

P[τtx = ν|τdec > ν,W = 1] = (1− pcs)
ν−1 (44)

for ν = `m. We obtain the desired bound by substitut-
ing (38), (41), (42), (43), and (44) into (37) and then (37)
into (35).
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