IEEE GLOBECOM 2018, Abu-Dhabi December 2018

Short-packet communications: fundamentals and practical coding schemes

Giuseppe Durisi, durisi@chalmers.se Gianluigi Liva, gianluigi.liva@dlr.de Fabian Steiner, fabian.steiner@tum.de

Outline

- Motivations
- Finite-blocklength performance bounds
- Applications
- Efficient Short Channel Codes
- Higher-Order Modulation

Outline

Motivations

Finite-blocklength performance bounds

- Applications
- Efficient Short Channel Codes
- Higher-Order Modulation

Machine-type communications (MTC)

Key enabler of future autonomous systems

source: IoTpool

- **5**G \Rightarrow massive MTC; ultra-reliable, low-latency comm.
- Low-power wireless-area networks ⇒ LoRa-WAN, SigFox,...

MTC traffic has unique characteristics: how to support it?

Unique characteristics of MTC traffic

- massive number of connected terminals
- transmitters are often idle
- short data packets
- Iow latency, high reliability
- high energy efficiency

Example

Long-term evolution (4G)

- Long packets (500 bytes)
- Packet error probability of 10⁻¹ at 5ms latency
- High reliability through retransmissions (HARQ)

MTC for factory automation

- Short packets: 100 bits of payload
- maximum delay of 100 µs
- packet error probability in the range $[10^{-5}, 10^{-9}]$

Example

Long-term evolution (4G)

- Long packets (500 bytes)
- Packet error probability of 10⁻¹ at 5ms latency
- High reliability through retransmissions (HARQ)

MTC for factory automation

- Short packets: 100 bits of payload
- maximum delay of 100 µs
- packet error probability in the range $[10^{-5}, 10^{-9}]$

- We need a fundamental paradigm shift in the design of wireless communication
- This tutorial: new fundamental tools & new practical coding schemes

Outline

Motivations

Finite-blocklength performance bounds

- Applications
- Efficient Short Channel Codes
- Higher-Order Modulation

A new toolbox: finite-blocklength information theory

The old toolbox: asymptotic information theory

The bit-pipe approximation

Claude E. Shannon (1916–2001)

The old toolbox: asymptotic information theory

The bit-pipe approximation

Claude E. Shannon (1916–2001)

$\log(1 + \text{sinr})$ formula used everywhere beyond PHY

- resource allocation & user scheduling
- delay analyses at the network level

The old toolbox: asymptotic information theory

The bit-pipe approximation

Claude E. Shannon (1916–2001)

$\log(1 + \text{sinr})$ formula used everywhere beyond PHY

- resource allocation & user scheduling
- delay analyses at the network level

If packet are shorts, bit-pipe approximation is not accurate!

Channel-coding problem

• More redundancy \Rightarrow lower packet error probability ϵ ...

Channel-coding problem

• More redundancy \Rightarrow lower packet error probability ϵ ...

• ... but also lower transmission rate
$$R = k/n$$

Channel-coding problem

• More redundancy \Rightarrow lower packet error probability ϵ ...

 \blacksquare ... but also lower transmission rate R=k/n

Which triplets (k, n, ϵ) are possible?

Page 7/134

An unsolvable problem?

Which triplets (k, n, ϵ) are possible?

An unsolvable problem?

Which triplets (k, n, ϵ) are possible?

- Smallest blocklength $n^*(k, \epsilon)$
- Largest number of bits $k^*(n, \epsilon)$
- \blacksquare Largest rate $R^*(n,\epsilon)=k^*(n,\epsilon)/n$

• Smallest error probability $\epsilon^*(k,n)$

An unsolvable problem?

Which triplets (k,n,ϵ) are possible?

- Smallest blocklength $n^*(k,\epsilon)$
- Largest number of bits $k^*(n,\epsilon)$

• Largest rate
$$R^*(n,\epsilon) = k^*(n,\epsilon)/n$$

• Smallest error probability $\epsilon^*(k,n)$

A very hard problem even for binary-input channels!

• Exhaustive search over $\binom{2^n}{2^k}$ codes

Example:
$$k = 5$$
, $n = 10 \Rightarrow 5 \times 10^{60}$ codes!!

1948: Shannon, channel capacity

 $\begin{array}{l} \mbox{Horizontal asymptotics} \Rightarrow \mbox{strong converse, fixed-error asymptotics} \\ \mbox{(Wolfowitz, Strassen,...)} \end{array}$

$$Y_j = \sqrt{\operatorname{snr}} X_j + N_j, \quad j = 1, \dots, n$$

•
$$W \in \{1, \dots, 2^k\}$$

• $X^n = [X_1, \dots, X_n]$ with $X_j \in \{-1, 1\}, j = 1, \dots, n$

$$Y_j = \sqrt{\operatorname{snr}} X_j + N_j, \quad j = 1, \dots, n$$

•
$$W \in \{1, ..., 2^k\}$$

• $X^n = [X_1, ..., X_n]$ with $X_j \in \{-1, 1\}, j = 1, ..., n$
• $N^n \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$

$$Y_j = \sqrt{\operatorname{snr}} X_j + N_j, \quad j = 1, \dots, n$$

•
$$W \in \{1, \ldots, 2^k\}$$

•
$$X^n = [X_1, \dots, X_n]$$
 with $X_j \in \{-1, 1\}, j = 1, \dots, n$

$$N^n \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$$

n: blocklength (size of coded packet)

$$Y_j = \sqrt{\operatorname{snr}} X_j + N_j, \quad j = 1, \dots, n$$

•
$$W \in \{1, \ldots, 2^k\}$$

- $X^n = [X_1, \dots, X_n]$ with $X_j \in \{-1, 1\}, j = 1, \dots, n$
- $\blacksquare N^n \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$
- n: blocklength (size of coded packet)
- $\epsilon = \mathbb{P}[\widehat{W} \neq W]$: packet error probability

$$Y_j = \sqrt{\operatorname{snr}} X_j + N_j, \quad j = 1, \dots, n$$

•
$$W \in \{1, \ldots, 2^k\}$$

•
$$X^n = [X_1, \dots, X_n]$$
 with $X_j \in \{-1, 1\}, j = 1, \dots, n$

$$N^n \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$$

- n: blocklength (size of coded packet)
- $\epsilon = \mathbb{P}[\widehat{W} \neq W]$: packet error probability
- R = k/n: rate [bits/channel use]

Page 10/134

snr vs. E_s/N_0 vs. E_b/N_0

Real-valued AWGN channel

$$Y_j = \sqrt{\operatorname{snr}} X_j + N_j, \quad j = 1, \dots, n$$

$$N^{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{n})$$

$$X_{j} \in \mathbb{R}, \quad j = 1, \dots, n$$

$$\mathbb{E}\left[|X_{j}|^{2}\right] = 1$$

$$\frac{E_{s}}{N_{0}} = \operatorname{sm}$$

Page 10/134

snr vs. E_s/N_0 vs. E_b/N_0

Real-valued AWGN channel

$$Y_j = \sqrt{\operatorname{snr}} X_j + N_j, \quad j = 1, \dots, n$$

$$N^{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{n})$$

$$X_{j} \in \mathbb{R}, \quad j = 1, \dots, n$$

$$\mathbb{E}\left[|X_{j}|^{2}\right] = 1$$

$$\frac{E_{s}}{N_{0}} = \operatorname{snr}$$

$$\frac{E_{b}}{N_{0}} = \frac{\operatorname{snr}}{2E}$$

Complex-valued AWGN channel

$$Y_j = \sqrt{\operatorname{snr}} X_j + N_j, \quad j = 1, \dots, n$$

$$N^{n} \sim \mathcal{CN}(\mathbf{0}, \mathbf{I}_{n})$$

$$X_{j} \in \mathbb{C}, \quad j = 1, \dots, n$$

$$\mathbb{E}\left[|X_{j}|^{2}\right] = 1$$

$$\frac{E_{s}}{N_{0}} = \operatorname{snr}$$

$$\frac{E_{b}}{N_{0}} = \frac{\operatorname{snr}}{R}$$

Shannon's capacity of bi-AWGN

Shannon's capacity:

Largest rate of reliable communication in the large \boldsymbol{n} limit

 $C = \lim_{\epsilon \to 0} \lim_{n \to \infty} R^{\star}(n, \epsilon)$

Shannon's coding theorem

The capacity of the bi-AWGN $P_{Y|X}$ is

$$C = \sup_{P_X} I(X;Y)$$

Shannon's capacity of bi-AWGN

Shannon's capacity:

Largest rate of reliable communication in the large n limit

 $C = \lim_{\epsilon \to 0} \lim_{n \to \infty} R^{\star}(n, \epsilon)$

Shannon's coding theorem

The capacity of the bi-AWGN $P_{Y|X}$ is

$$C = \sup_{P_X} I(X;Y)$$

Mutual information

$$I(X;Y) = \mathbb{E}\left[\log\frac{P_{Y|X}(Y|X)}{P_Y(Y)}\right] = D(P_{Y|X}P_X || P_YP_X)$$

where

$$P_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y-\sqrt{\operatorname{snr}}x)^2}{2}\right)$$

Information density

Mutual information

$$I(X;Y) = \mathbb{E}\left[\log \frac{P_{Y|X}(Y|X)}{P_Y(Y)}\right] = D(P_X P_{Y|X} || P_X P_Y)$$

Information density

$$i(x;y) = \log \frac{P_{Y|X}(y|x)}{P_Y(y)}$$

• asymptotic IT: mean of i(X; Y)

FBL-IT: tail distribution of
$$i(X^n; Y^n) = \sum_{j=1}^n i(X_j; Y_j)$$

Page 13/134

Computing capacity

$$C = \sup_{P_X} I(X;Y)$$

Page 13/134

Computing capacity

$$C = \sup_{P_X} I(X;Y)$$

- P_X^* uniform over $\{-1,1\}$
- $P_Y^* = (1/2)\mathcal{N}(-\sqrt{\operatorname{snr}}, 1) + (1/2)\mathcal{N}(\sqrt{\operatorname{snr}}, 1)$
- Information density

$$i(x;y) = \log \frac{P_{Y|X}(y|x)}{P_Y^*(y)} = \log 2 - \log \left(1 + \exp(-2xy\sqrt{\operatorname{snr}})\right)$$

Capacity

$$C = \frac{1}{\sqrt{2\pi}} \int e^{-z^2/2} \left(\log 2 - \log \left(1 + e^{-2\operatorname{snr} - 2z\sqrt{\operatorname{snr}}} \right) \right) dz$$

Capacity of bi-AWGN channel

Note: R = 0.5 at snr = 0.189 dB

ТШ

Finite blocklength: R vs. ϵ

 10^{0} 10^{-2} 10^{-4} achievability ψ converse 10^{-6} 128 $n \neq \infty$ 10^{-8} 0.10.20.30.40.5R

Page 16/134

A different perspective: snr vs ϵ at R = 0.5

Converse bound: a preview

The converse bound

- Based on metaconverse (MC) theorem¹
- Recovers all previously known converse bounds
- Relies on binary hypothesis testing
- Requires choosing wisely an auxiliary probability distribution²

 $^1 Y.$ Polyanskiy et al., "Channel coding rate in the finite blocklength regime", IEEE Trans. Inf. Theory (2010)

²G. Vazquez-Vilar et al., "Saddlepoint approximation of the error probability of binary hypothesis tasting" in Proc. IEEE Int. Symp. Inf. Theory (ISIT) (July 2018)

Achievability bound: a preview

The achievability bound

- Based on the random coding union bound (RCU)³
- Not constructive
- Relies on maximum likelihood detection
- Generalizes naturally to arbitrary (mismatched) decoding metrics
- Tight in both normal and error-exponent regimes

 $^3 Y.$ Polyanskiy et al., "Channel coding rate in the finite blocklength regime", IEEE Trans. Inf. Theory (2010)

Fact 1: the bounds are tight

- Fact 1: the bounds are tight
- **Fact 2:** the bounds are general

- **Fact 1:** the bounds are tight
- **Fact 2:** the bounds are general
- **Fact 3:** the bounds can be computed efficiently

- **Fact 1:** the bounds are tight
- **Fact 2:** the bounds are general
- **Fact 3:** the bounds can be computed efficiently
- Fact 4: the bounds can be approximated accurately using simple mathematical expressions

- **Fact 1:** the bounds are tight
- **Fact 2:** the bounds are general
- **Fact 3:** the bounds can be computed efficiently
- Fact 4: the bounds can be approximated accurately using simple mathematical expressions
- **Fact 5:** numerical implementations of these bounds are available online

Fact 1: the bounds are tight

Bi-AWGN, Rate 1/2, n = 128

Fact 2: the bounds are general

- Discrete memoryless channels: BSC, BEC
- AWGN, bi-AWGN, coded modulation
- Fading channels under various CSI assumptions: from no CSI to full CSI at TX and Rx
- Pilot-assisted transmission, MIMO
- ARQ, HARQ, full feedback
- Joint coding and queuing analyses
- Erasure and list decoding
- Interference

...

Fact 3: The bounds can be computed efficiently

- Key problem: compute efficiently $\mathbb{P}[\imath(X^n;Y^n) \leq \gamma]$

- Can be done using the saddlepoint method⁴
- Accurate results for blocklengths as small as 20
- Computational time for bi-AWGN: few seconds on a laptop computer

⁴A. Martinez and A. Guillén i Fàbregas, "Saddlepoint approximation of random–coding bounds", in Proc. Inf. Theory Applicat. Workshop (ITA) (2011)

Fact 4: the bounds are easy to approximate

Normal approximation

Metaconverse and RCUs expansions for fixed ϵ and $n \to \infty$ match up to third order for many channels!

$$R^*(n,\epsilon) = C - \sqrt{\frac{V}{n}} \mathbf{Q}^{-1}(\epsilon) + \frac{1}{2n} \log n + O\left(\frac{1}{n}\right)$$

• C: capacity
$$\Rightarrow$$
 mean of $i(X;Y)$

- V: dispersion \Rightarrow variance of $\imath(X;Y)$
- Proof via Berry-Esseen central limit theorem
- Useful approximation

$$\epsilon^*(k,n) \approx Q \left(\frac{nC - k + 0.5 \log_2(n)}{\sqrt{nV}} \right)$$

Normal approximation is accurate for medium rates...

... but inaccurate for low rates and low error probabilities

Unsuitable for URLLC?

Fact 5: Numerical implementation of these bounds (and more) are available online

Spectre: github.com/yp-mit/spectre

- Collection of numerical routines in finite-blocklength information theory
- Authors: Chalmers, MIT, Caltech, Padova, Technion, Princeton

pretty-good-codes.org

- Repository of channel coding schemes
- G. Liva (DLR) & F. Steiner (TUM)

A closer look at the converse bound: binary hypothesis testing

Optimal test

Neyman-Pearson β function

• Optimal test $P_{Z|X^n}^*$ minimizes error prob. under Q_{X^n} given a constraint on the success prob. under P_{X^n}

Optimal test

Neyman-Pearson β function

• Optimal test $P_{Z|X^n}^*$ minimizes error prob. under Q_{X^n} given a constraint on the success prob. under P_{X^n}

•
$$\beta_{\alpha}(P_{X^n}, Q_{X^n}) = \inf_{\substack{P_{Z+X^n}: P_{X^n}[Z=0] \ge \alpha}} Q_{X^n}[Z=0]$$

Neyman-Pearson & Stein Lemmas

Neyman-Pearson Lemma

The optimal test involves thresholding log-likelihood ratios

•
$$\beta_{\alpha}(P_{X^n}, Q_{X^n}) = Q_{X^n} \left[\log \frac{P_{X^n}}{Q_{X^n}} (X^n) \ge \gamma \right]$$

• where $\gamma : P_{X^n} \left[\log \frac{P_{X^n}}{Q_{X^n}} (X^n) \ge \gamma \right] = \alpha$

Neyman-Pearson & Stein Lemmas

Neyman-Pearson Lemma

The optimal test involves thresholding log-likelihood ratios

•
$$\beta_{\alpha}(P_{X^n}, Q_{X^n}) = Q_{X^n} \left[\log \frac{P_{X^n}}{Q_{X^n}} (X^n) \ge \gamma \right]$$

• where $\gamma : P_{X^n} \left[\log \frac{P_{X^n}}{Q_{X^n}} (X^n) \ge \gamma \right] = \alpha$

Stein's Lemma

Assume that X^n has i.i.d. entries. Then $\beta_\alpha(P_{X^n},Q_{X^n})$ decays to zero exponentially fast in n

$$\lim_{n \to \infty} \frac{1}{n} \log \beta_{\alpha}(P_{X^n}, Q_{X^n}) = -D(P_X || Q_X)$$

Neyman-Pearson & Stein Lemmas

Neyman-Pearson Lemma

The optimal test involves thresholding log-likelihood ratios

•
$$\beta_{\alpha}(P_{X^n}, Q_{X^n}) = Q_{X^n} \left[\log \frac{P_{X^n}}{Q_{X^n}} (X^n) \ge \gamma \right]$$

• where $\gamma : P_{X^n} \left[\log \frac{P_{X^n}}{Q_{X^n}} (X^n) \ge \gamma \right] = \alpha$

Stein's Lemma

Assume that X^n has i.i.d. entries. Then $\beta_\alpha(P_{X^n},Q_{X^n})$ decays to zero exponentially fast in n

$$\lim_{n \to \infty} \frac{1}{n} \log \beta_{\alpha}(P_{X^n}, Q_{X^n}) = -D(P_X || Q_X)$$

But mutual information is a relative entropy; what is the underlying binary test?

The metaconverse framework

Min-max converse theorem

Fix an arbitrary Q_{Y^n} . Every (k, n, ϵ) -code satisfies

$$k \le \sup_{P_{X^n}} \left\{ -\log_2 \beta_{1-\epsilon} (P_{X^n} P_{Y^n \mid X^n}, P_{X^n} Q_{Y^n}) \right\}$$

 5 G. Vazquez-Vilar et al., "Saddlepoint approximation of the error probability of binary hypothesis testing", in Proc. IEEE Int. Symp. Inf. Theory (ISIT) (July 2018)

The metaconverse framework

Min-max converse theorem

Fix an arbitrary Q_{Y^n} . Every (k, n, ϵ) -code satisfies

$$k \leq \sup_{P_{X^n}} \left\{ -\log_2 \beta_{1-\epsilon} (P_{X^n} P_{Y^n \mid X^n}, P_{X^n} Q_{Y^n}) \right\}$$

Evaluation of the bound

• If one chooses
$$Q_{Y^n} = (P_Y^*)^n$$
,

$$\beta_{1-\epsilon}(P_{X^n}P_{Y^n\mid X^n}, P_{X^n}Q_{Y^n}) = \beta_{1-\epsilon}(P_{Y^n\mid X^n=\bar{x}}, Q_{Y^n})$$

where $\bar{x} = [1, 1, \dots, 1]$

Better choice: error-exponent-achieving output distribution⁵

⁵G. Vazquez-Vilar et al., "Saddlepoint approximation of the error probability of binary hypothesis testing", in Proc. IEEE Int. Symp. Inf. Theory (ISIT) (July 2018)

Random-coding union bound (RCU)

For every input distribution P_{X^n} , there exists a (k, n, ϵ) code satisfying $\epsilon \leq \mathbb{E}\left[\min\left\{1, (2^k - 1)\mathbb{P}[\imath(\bar{X}^n, Y^n) \geq \imath(X^n, Y^n)] \mid X^n, Y^n\right\}\right]$ where $P_{X^n, \bar{X}^n, Y^n}(x^n, \bar{x}^n, y^n) = P_{Y^n \mid X^n}(y^n \mid x^n)P_{X^n}(x^n)P_{\bar{X}^n}(\bar{x}^n)$

Proof: error probability under random coding and ML decoding + union bound

⁶J. Font-Segura et al., "Saddlepoint approximations of lower and upper bounds to the error probability in channel coding", in Proc. Conf. Inf. Sci. Sys. (CISS) (2018)

Random-coding union bound (RCU)

For every input distribution P_{X^n} , there exists a (k, n, ϵ) code satisfying $\epsilon \leq \mathbb{E}\left[\min\left\{1, (2^k - 1)\mathbb{P}[\imath(\bar{X}^n, Y^n) \geq \imath(X^n, Y^n)] \mid X^n, Y^n\right\}\right]$ where $P_{X^n, \bar{X}^n, Y^n}(x^n, \bar{x}^n, y^n) = P_{Y^n \mid X^n}(y^n \mid x^n)P_{X^n}(x^n)P_{\bar{X}^n}(\bar{x}^n)$

- Proof: error probability under random coding and ML decoding + union bound
- Similar to derivation of Gallager's random coding error exponent

⁶J. Font-Segura et al., "Saddlepoint approximations of lower and upper bounds to the error probability in channel coding", in Proc. Conf. Inf. Sci. Sys. (CISS) (2018)

Random-coding union bound (RCU)

For every input distribution P_{X^n} , there exists a (k, n, ϵ) code satisfying $\epsilon \leq \mathbb{E}\left[\min\left\{1, (2^k - 1)\mathbb{P}[\imath(\bar{X}^n, Y^n) \geq \imath(X^n, Y^n)] \mid X^n, Y^n\right\}\right]$ where $P_{X^n, \bar{X}^n, Y^n}(x^n, \bar{x}^n, y^n) = P_{Y^n \mid X^n}(y^n \mid x^n)P_{X^n}(x^n)P_{\bar{X}^n}(\bar{x}^n)$

- Proof: error probability under random coding and ML decoding + union bound
- Similar to derivation of Gallager's random coding error exponent
- ${\ensuremath{\,^\circ}}\xspace$ $\imath(x^n,y^n)$ can be replaced by arbitrary mismatched metric

⁶J. Font-Segura et al., "Saddlepoint approximations of lower and upper bounds to the error probability in channel coding", in Proc. Conf. Inf. Sci. Sys. (CISS) (2018)

Random-coding union bound (RCU)

For every input distribution P_{X^n} , there exists a (k, n, ϵ) code satisfying $\epsilon \leq \mathbb{E}\left[\min\left\{1, (2^k - 1)\mathbb{P}[\imath(\bar{X}^n, Y^n) \geq \imath(X^n, Y^n)] \mid X^n, Y^n\right\}\right]$ where $P_{X^n, \bar{X}^n, Y^n}(x^n, \bar{x}^n, y^n) = P_{Y^n \mid X^n}(y^n \mid x^n)P_{X^n}(x^n)P_{\bar{X}^n}(\bar{x}^n)$

- Proof: error probability under random coding and ML decoding + union bound
- Similar to derivation of Gallager's random coding error exponent
- ${\ensuremath{\,^\circ}}\xspace{-1.5ex}\ \imath(x^n,y^n)$ can be replaced by arbitrary mismatched metric
- Efficient saddlepoint approximation available⁶

⁶J. Font-Segura et al., "Saddlepoint approximations of lower and upper bounds to the error probability in channel coding", in Proc. Conf. Inf. Sci. Sys. (CISS) (2018)

Outline

Motivations

Finite-blocklength performance bounds

Applications

- Example 1: short packets over fading channels
- Example 2: joint queuing and coding analyses
- Efficient Short Channel Codes
- Higher-Order Modulation

Outline

Motivations

Finite-blocklength performance bounds

Applications

- Example 1: short packets over fading channels
- Example 2: joint queuing and coding analyses
- Efficient Short Channel Codes
- Higher-Order Modulation

Enter fading

AWGN channel with fluctuating SNR and mutiple inputs/outputs

Enter fading

- AWGN channel with fluctuating SNR and mutiple inputs/outputs
- Performance limits depend on:
 - How $\{H_j\}$ varies within the packet
 - Fading knowledge: noCSI ,CSIR, CSIT, CSIRT

The memoryless block-fading model

Relevance to 5G

Two notions of capacity

Outage capacity

- $n_{\rm c} \rightarrow \infty$, ℓ fixed
- Fading process stays "constant" over the packet
- X Does not capture the "cost" of learning the channel at the receiver

Ergodic capacity

- $\ell \to \infty$, $n_{\rm c}$ fixed
- Fading process varies rapidly over the packet
- Requires coding over many coherence intervals
- $\pmb{\mathsf{X}}$ Does not depend on ϵ

A 5G design problem

time-frequency diversity branches ℓ (log scale)

Page 37/134

ПΠ

SISO case⁷: n = 168, k = 81, $\epsilon = 10^{-3}$

Outline

Motivations

Finite-blocklength performance bounds

Applications

- Example 1: short packets over fading channels
- Example 2: joint queuing and coding analyses
- Efficient Short Channel Codes
- Higher-Order Modulation

Beyond PHY analyses

Extend theory to include

Queuing delay

Random arrival of information packets

Beyond PHY analyses

Extend theory to include

Queuing delay

Random arrival of information packets

Performance metric: Steady-state delay violation probability

 $\mathbb{P}\big\{\mathsf{packet \ delay} \geq \mathsf{threshold}\big\}$

Our setup

Random packet arrival and queue

Packet arrival: i.i.d. Bernoulli process with parameter λ over channel uses

Packets stored in a single-server FCFS queue

Service process

- AWGN channel, error-free, instantaneous 1-bit feedback.
- τ : number of frames after which ack is sent

Service process

- AWGN channel, error-free, instantaneous 1-bit feedback.
- τ : number of frames after which ack is sent

How should one choose n to minimize the delay-violation probability for a given information packet arrival rate $\lambda?$

Steady-state delay-violation probability

- D_m : waiting time + service time of mth packet
- Probability that delay exceeds d_0 at steady state

 $P_{\rm dv}(d_0) = \limsup_{m \to \infty} \mathbb{P}[D_m \ge d_0]$

⁷R. Devassy et al., "Delay and peak-age violation probability in short-packet transmission", in Proc. IEEE Int. Symp. Inf. Theory (ISIT) (June 2018)

Steady-state delay-violation probability

- D_m : waiting time + service time of *m*th packet
- Probability that delay exceeds d_0 at steady state

$$P_{\rm dv}(d_0) = \limsup_{m \to \infty} \mathbb{P}[D_m \ge d_0]$$

Theorem⁸

For every coding scheme satisfying $\lambda n\mathbb{E}[\tau]<1,$ the probability generating function $G_D(s)$ of D is

$$G_D(s) = \mathbf{F}(s, \lambda, \mathbb{E}[\tau], G_\tau(s))$$

⁷R. Devassy et al., "Delay and peak-age violation probability in short-packet transmission", in Proc. IEEE Int. Symp. Inf. Theory (ISIT) (June 2018)

Steady-state delay-violation probability

- D_m : waiting time + service time of mth packet
- Probability that delay exceeds d_0 at steady state

$$P_{\rm dv}(d_0) = \limsup_{m \to \infty} \mathbb{P}[D_m \ge d_0]$$

Theorem⁸

For every coding scheme satisfying $\lambda n\mathbb{E}[\tau]<1,$ the probability generating function $G_D(s)$ of D is

$$G_D(s) = \mathbf{F}(s, \lambda, \mathbb{E}[\tau], G_\tau(s))$$

We can use FBL-IT to characterize $G_{\tau}(s)$ and $\mathbb{E}[\tau]$

⁷R. Devassy et al., "Delay and peak-age violation probability in short-packet transmission", in Proc. IEEE Int. Symp. Inf. Theory (ISIT) (June 2018)

Delay-violation probability vs blocklength (ARQ)

Conclusions

Finite-blocklength inf. theory

- ✓ Elegant theory
- ✓ Tight bounds for short-packet transmissions (including queues)
- ✓ Many engineering insights for the design LP-WAN, 5G, and beyond

Additional material: gdurisi.github.io/tags/#fbl-tutorial

Outline

Motivations

Finite-blocklength performance bounds

Applications

Efficient Short Channel Codes

- Efficient Short Classical Codes: Tail-Biting Convolutional Codes
- Efficient Short Modern Codes: Turbo Codes
- Efficient Short Modern Codes: Binary Low-Density Parity-Check Codes
- Efficient Short Modern Codes: Polar Codes
- Two Case Studies

Higher-Order Modulation

Efficient Short Channel Codes

Classical

- Algebraic codes (BCH, Reed-Solomon, etc.)
- (Tail-biting) convolutional codes

Modern

- Turbo codes (parallel concatenation)
- Low-density parity-check (LDPC) codes, binary and non-binary
- Polar codes

Decoder Types Complete vs. Incomplete⁸

Complete:

- maximum-likelihood
- ordered statistics
- successive cancellation etc.

Incomplete:

- bounded distance*
- belief propagation* etc.

⁸G Forney, "Exponential error bounds for erasure, list, and decision feedback schemes", IEEE Trans. Inf. Theory (1968)

Decoder Types Complete vs. Incomplete⁸

Complete:

- maximum-likelihood
- ordered statistics
- successive cancellation etc.
- all errors are undetected

Incomplete:

- bounded distance*
- belief propagation* etc.
- error detection capability

⁸G Forney, "Exponential error bounds for erasure, list, and decision feedback schemes", IEEE Trans. Inf. Theory (1968)

Outline

Motivations

Finite-blocklength performance bounds

Applications

Efficient Short Channel Codes

- Efficient Short Classical Codes: Tail-Biting Convolutional Codes
- Efficient Short Modern Codes: Turbo Codes
- Efficient Short Modern Codes: Binary Low-Density Parity-Check Codes
- Efficient Short Modern Codes: Polar Codes
- Two Case Studies
- Higher-Order Modulation

Convolutional Codes Definitions by Example (Binary-Input Only)

- Nominal rate $R_0 = k_0/n_0 = 1/2$
- Memory m = 2

- 2^m states per section
- $2^{k_0} = 2$ edges leaving each state

Convolutional codes to block codes: Run the encoder for k/k_0 clocks, then stop

Truncation: Block error probability rises to the last bits

Zero-tail: Improved block error probability BUT rate loss

$$R = \frac{k}{k+m}R_0$$

Tail-biting:

■ Force initial = final state

Tail-biting:

- Force initial = final state
- Codewords ≡ circular paths

Tail-biting:

- Force initial = final state
- Codewords ≡ circular paths
- No rate loss, but decoding gets more complex...

Unroll the tail-biting trellis

- Unroll the tail-biting trellis
- \blacksquare Run 2^m instances of the Viterbi algorithm, one per initial/final state hypothesis

- Unroll the tail-biting trellis
- \blacksquare Run 2^m instances of the Viterbi algorithm, one per initial/final state hypothesis

- Unroll the tail-biting trellis
- \blacksquare Run 2^m instances of the Viterbi algorithm, one per initial/final state hypothesis

- Unroll the tail-biting trellis
- \blacksquare Run 2^m instances of the Viterbi algorithm, one per initial/final state hypothesis

- Unroll the tail-biting trellis
- \blacksquare Run 2^m instances of the Viterbi algorithm, one per initial/final state hypothesis

- Each decoder produces a decision (path): List of 2^m codewords
- Select the most likely codeword in the list

Tail-Biting Convolutional Codes Maximum-Likelihood Decoding

- Unroll the tail-biting trellis
- \blacksquare Run 2^m instances of the Viterbi algorithm, one per initial/final state hypothesis

- Each decoder produces a decision (path): List of 2^m codewords
- Select the most likely codeword in the list
- Complexity of (almost) 2^m Viterbi decoders, quadratic in 2^m

- Runs the Viterbi algorithm successively for more iterations
- Improves the reliability of the decision at each iteration
- Achieves near-optimal performance

⁹R. Y.Shao et al., "Two decoding algorithms for tailbiting codes", IEEE Trans. Commun. (2003)

Start decoding with equiprobable initial states

- Start decoding with equiprobable initial states
- \blacksquare Run a first Viterbi algorithm iteration, and output the most likely path $\mathcal P$

- Start decoding with equiprobable initial states
- \blacksquare Run a first Viterbi algorithm iteration, and output the most likely path $\mathcal P$
- Is *P* a tail-biting path?

- Start decoding with equiprobable initial states
- **\blacksquare** Run a first Viterbi algorithm iteration, and output the most likely path \mathcal{P}
- Is \mathcal{P} a tail-biting path?
 - YES: stop
 - NO: replace the initial state metrics with the computed final state metrics, and perform another Viterbi algorithm iteration

- Start decoding with equiprobable initial states
- \blacksquare Run a first Viterbi algorithm iteration, and output the most likely path $\mathcal P$
- Is *P* a tail-biting path?
 - YES: stop
 - NO: replace the initial state metrics with the computed final state metrics, and perform another Viterbi algorithm iteration

- Start decoding with equiprobable initial states
- \blacksquare Run a first Viterbi algorithm iteration, and output the most likely path $\mathcal P$
- Is *P* a tail-biting path?
 - YES: stop
 - NO: replace the initial state metrics with the computed final state metrics, and perform another Viterbi algorithm iteration
- A maximum number of iterations is allowed (e.g., 4)

Tail-Biting Convolutional Codes

Examples of Good (Time-Invariant) Tail-Biting Codes¹⁰¹¹

Generators (octal)	\overline{m}	(n,k)	Minimum Distance
[515, 677]	8	(128, 64)	12
[5537, 6131]	11	(128, 64)	14
[75063, 56711]	14	(128, 64)	16
[515, 677]	8	(256, 128)	12
[5537, 6131]	11	(256, 128)	14
[75063, 56711]	14	(256, 128)	16

¹¹R. Johannesson and K. S. Zigangirov, Fundamentals of convolutional coding, (John Wiley & Sons, 2015)

¹⁰P. Stahl et al., "Optimal and near-optimal encoders for short and moderate-length tail-biting trellises", IEEE Trans. Inf. Theory (1999)

Tail-Biting Convolutional Codes Observations

- Close to optimal at short block lengths ($k \le 100$ bits)
- Efficient decoding via wrap around Viterbi algorithm (incomplete decoding algorithm)
- For a fixed memory, performance does not improve with the block length
- Shall be employed only at the lowest part of the block length spectrum

Outline

Motivations

Finite-blocklength performance bounds

Applications

Efficient Short Channel Codes

- Efficient Short Classical Codes: Tail-Biting Convolutional Codes
- Efficient Short Modern Codes: Turbo Codes
- Efficient Short Modern Codes: Binary Low-Density Parity-Check Codes
- Efficient Short Modern Codes: Polar Codes
- Two Case Studies
- Higher-Order Modulation

Parallel Concatenated Convolutional Codes

- Turbo codes with <u>16-states component</u> codes provide the excellent trade-off between minimum distance and decoding threshold¹²¹³
- Tail-biting component codes reduce termination overhead¹⁴¹⁵
- Interleaver design is crucial

FB/FFW Polynomial (Octal)	$(E_b/N_0)^{\star}$, $R = 1/2$	Notes
27/37	0.56 dB	16-states
23/35	0.62 dB	16-states
15/13	0.70 dB	8-states

¹⁵T. Jerkovits and B. Matuz, "Turbo code design for short blocks", in Proc. 7th Advanced Satellite Mobile Systems Conference (2016)

¹²C. Berrou et al., "Near Shannon limit error-correcting coding and decoding: turbo-codes", in Proc. ICC (1993)

¹³H. El-Gamal and J. Hammons AR., "Analyzing the turbo decoder using the gaussian approximation", IEEE Trans. Inf. Theory (2001)

 $^{^{14}\}text{C}.$ Weiss et al., "Code construction and decoding of parallel concatenated tail-biting codes", IEEE Trans. Inf. Theory (2001)

Parallel Concatenated Convolutional Codes Factor Graph

Turbo codes factor graphs¹⁶ are characterized by large girth

 $^{^{16}}$ N. Wiberg, "Codes and decoding on general graphs", PhD thesis (Linköping University, 1996)

Parallel Concatenated Convolutional Codes Interleavers

- The interleaver is the main responsible for large girth and spread (essential for large d_{min})
- Yet, $d_{\min} = \mathcal{O}(\log n)$
- Among the best-known constructions
 - Dithered-Relative-Prime (DRP)¹⁷
 - Quadratic permutation polynomial (QPP) LTE ¹⁸

¹⁸O. Takeshita, "On maximum contention-free interleavers and permutation polynomials over integer rings", IEEE Trans. Inf. Theory (2006)

¹⁷S. Crozier and P. Guinand, "High-performance low-memory interleaver banks for turbo-codes", in Proc. IEEE VTC (2001)

Turbo Codes Observations

- Performance within 0.7 dB from RCU bound at moderate error rates
- Decoding can be partially parallelized
- 16-states tail-biting component codes: Good compromise between decoding complexity and performance

Outline

Motivations

Finite-blocklength performance bounds

Applications

Efficient Short Channel Codes

- Efficient Short Classical Codes: Tail-Biting Convolutional Codes
- Efficient Short Modern Codes: Turbo Codes
- Efficient Short Modern Codes: Binary Low-Density Parity-Check Codes
- Efficient Short Modern Codes: Polar Codes
- Two Case Studies
- Higher-Order Modulation

Low-Density Parity-Check Codes Graphical Representation of the Parity-Check Matrix

• Low-density¹⁹ H matrix imposing a set of n - k constraints

Graphical representation via Tanner graphs²⁰

- Codeword bits \equiv variable nodes (VNs)
- Check equations \equiv check nodes (CNs)

¹⁹R. Gallager, Low-density parity-check codes, (1963)

²⁰M. Tanner, "A recursive approach to low complexity codes", IEEE Trans. Inf. Theory (1981)

Low-Density Parity-Check Codes Graphical Representation of the Parity-Check Matrix

Graphical representation via Tanner graphs (cont'd)

LDPC Codes: Structured Ensembles

Structured LDPC Code

- Protograph: small Tanner graph used as template to build the code graph
- Equivalent representation: base matrix

$$\mathbf{B} = \left(\begin{array}{rrr} 2 & \mathbf{1} & \mathbf{0} \\ 1 & \mathbf{1} & \mathbf{1} \end{array}\right)$$

- A protograph can be used to construct a larger Tanner graph by a copy & permute procedure
- The larger Tanner graph defines the code
- First step: Protograph is copied Q times

0
0
0
0
- 0
- 0
0
1

- Second step: Permute edges among the replicas
- Permutations shall avoid parallel edges

	(1	1	0	0	0	1	0	0	0	0	0	0)	
		1	0	1	0	0	0	0	1	0	0	0	0	
		0	0	1	1	0	0	1	0	0	0	0	0	
и_		0	1	0	1	1	0	0	0	0	0	0	0	
- 11		1	0	0	0	1	0	0	0	0	1	0	0	
		0	0	1	0	0	0	0	1	0	0	1	0	
		0	1	0	0	0	0	1	0	1	0	0	0	
	ſ	0	0	0	1	0	1	0	0	0	0	0	1 /	

- Second step: Permute edges among the replicas
- Permutations shall avoid parallel edges

	(1	1	0	0	0	1	0	0	0	0	0	0)	
		1	0	1	0	0	0	0	1	0	0	0	0	
		0	0	1	1	0	0	1	0	0	0	0	0	
и_		0	1	0	1	1	0	0	0	0	0	0	0	
- 11		1	0	0	0	1	0	0	0	0	1	0	0	
		0	0	1	0	0	0	0	1	0	0	1	0	
		0	1	0	0	0	0	1	0	1	0	0	0	
	ſ	0	0	0	1	0	1	0	0	0	0	0	1 /	

- Second step: Permute edges among the replicas
- Permutations shall avoid parallel edges

A protograph defines structured LDPC code ensemble: The iterative decoding threshold and distance properties follow from the protograph

- Depending on code length, the expansion can be done in more steps
- In each step, girth optimization techniques²¹ are used
- The final expansion is usually performed by means of circulant permutation matrices (quasi-cyclic code)²²

²¹X.-Y. Hu et al., "Regular and irregular progressive edge-growth Tanner graphs", IEEE Trans. Inf. Theory (2005)

²²W. Ryan and S. Lin, Channel codes – Classical and modern, (Cambridge Univ. Press, 2009)

- Depending on code length, the expansion can be done in more steps
- In each step, girth optimization techniques²¹ are used
- The final expansion is usually performed by means of circulant permutation matrices (quasi-cyclic code)²²

²¹X.-Y. Hu et al., "Regular and irregular progressive edge-growth Tanner graphs", IEEE Trans. Inf. Theory (2005)

²²W. Ryan and S. Lin, Channel codes – Classical and modern, (Cambridge Univ. Press, 2009)

- Punctured (state) and degree-1 variable nodes are allowed
- Near-capacity thresholds can be achieved with lower average degrees than unstructured LDPC codes → larger girth
- Example: Accumulate-Repeat-3-Accumlate (AR3A), R = 1/2, $snr^* = 0.475$ dB, only 0.3 dB from Shannon limit

 Serial concatenation of a high-rate protograph-based outer LDPC code, and a protograph-based LT code²³

$$\mathbf{B} = \begin{pmatrix} \mathbf{B}_{\text{o}} & \mathbf{0} \\ \hline & \mathbf{B}_{\text{LT}} \end{pmatrix}$$

²³T.-Y. Chen et al., "Protograph-Based Raptor-Like LDPC Codes", ArXiv (2014)

 Serial concatenation of a high-rate protograph-based outer LDPC code, and a protograph-based LT code²³

$$\mathbf{B} = \left(\begin{array}{c|c} \mathbf{B}_{\mathsf{o}} & \mathbf{0} \\ \hline & \mathbf{B}_{\mathsf{LT}} \end{array} \right)$$

Although the construction targets short block lengths, the outer code parity-check matrix density prevents from obtaining large girths at very short block lengths

²³T.-Y. Chen et al., "Protograph-Based Raptor-Like LDPC Codes", ArXiv (2014)

Large flexibility of rates, with thresholds within 0.5 dB from the Shannon limit

Large flexibility of rates, with thresholds within 0.5 dB from the Shannon limit

R	$\operatorname{snr}^{\star}$	Shannon Limit
6/7	3.077 dB	2.625 dB
6/8	1.956 dB	1.626 dB
6/9	1.392 dB	1.059 dB
6/10	1.078 dB	0.679 dB
6/11	0.798 dB	0.401 dB
6/12	$0.484 \; \mathrm{dB}$	0.187 dB
6/13	0.338 dB	0.018 dB
6/14	$0.144 \; \mathrm{dB}$	$-0.122~\mathrm{dB}$
6/15	0.072 dB	-0.238 dB
6/16	0.030 dB	-0.337 dB
6/17	$-0.024~\mathrm{dB}$	$-0.422 \; \mathrm{dB}$
6/18	$-0.150~\mathrm{dB}$	$-0.495~\mathrm{dB}$

■ 5G proposal (enhanced mobile broadband)

■ 5G proposal (enhanced mobile broadband)

LDPC Codes for 5G New Radio (NR) Introduction

- In 3G and 4G, Turbo codes were used as channel codes.
- For 5G NR enhanced mobile broadband (eMBB), 3GPP opted for LDPC codes²⁴.
- Requirements for 5G NR:
 - 1. Support of a wide range of blocklengths and code rates.

²⁴3GPP TS 38.212 V15.0.0: Multiplexing and channel coding, Dec. 2017

LDPC Codes for 5G New Radio (NR) Introduction

- In 3G and 4G, Turbo codes were used as channel codes.
- For 5G NR enhanced mobile broadband (eMBB), 3GPP opted for LDPC codes²⁴.
- Requirements for 5G NR:
 - 1. Support of a wide range of blocklengths and code rates.
 - 2. Support for incremental-redundancy hybrid automatic repeat request (ARQ).

²⁴3GPP TS 38.212 V15.0.0: Multiplexing and channel coding, Dec. 2017

LDPC Codes for 5G New Radio (NR) Introduction

- In 3G and 4G, Turbo codes were used as channel codes.
- For 5G NR enhanced mobile broadband (eMBB), 3GPP opted for LDPC codes²⁴.
- Requirements for 5G NR:
 - 1. Support of a wide range of blocklengths and code rates.
 - 2. Support for incremental-redundancy hybrid automatic repeat request (ARQ).
 - Hardware-friendly implementation: minimal description complexity, possibility for parallelization.

²⁴3GPP TS 38.212 V15.0.0: Multiplexing and channel coding, Dec. 2017

LDPC Codes for 5G New Radio Base Matrices

LDPC codes for 5G New Radio Design Principles

- Introduction of two state, i.e., punctured, variable nodes. Beneficial for lowering the decoding threshold.
- Punctured variable nodes are in the systematic part and have high variable node degrees.
- Connected to at least one degree 1 variable node in the extension part.

Binary Low-Density Parity-Check Codes Observations

- Performance within 1.2 dB from RCU bound at short block lengths
- Protograph construction fundamental to achieve good performance with practical decoders
- Depending on the code design, strong error detection capability

Outline

Motivations

Finite-blocklength performance bounds

Applications

Efficient Short Channel Codes

- Efficient Short Classical Codes: Tail-Biting Convolutional Codes
- Efficient Short Modern Codes: Turbo Codes
- Efficient Short Modern Codes: Binary Low-Density Parity-Check Codes
- Efficient Short Modern Codes: Polar Codes
- Two Case Studies

Higher-Order Modulation

Polar Codes Introduction

 Class of provably capacity achieving codes over memoryless binary input output symmetric channels under low-complexity (successive cancellation) decoding²⁵

²⁵E. Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels", IEEE Trans. Inf. Theory (2009)

²⁶I. Tal and A. Vardy, "List decoding of polar codes", IEEE Trans. Inf. Theory (2015)

Polar Codes Introduction

- Class of provably capacity achieving codes over memoryless binary input output symmetric channels under low-complexity (successive cancellation) decoding²⁵
- Their performance at short block lengths is disappointing but...

²⁵E. Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels", IEEE Trans. Inf. Theory (2009)

²⁶I. Tal and A. Vardy, "List decoding of polar codes", IEEE Trans. Inf. Theory (2015)

Polar Codes Introduction

- Class of provably capacity achieving codes over memoryless binary input output symmetric channels under low-complexity (successive cancellation) decoding²⁵
- Their performance at short block lengths is disappointing but...
 - list decoding with the aid of an outer-high rate code²⁶ yields one of the best code constructions at short block lengths!

²⁵E. Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels", IEEE Trans. Inf. Theory (2009)

²⁶I. Tal and A. Vardy, "List decoding of polar codes", IEEE Trans. Inf. Theory (2015)

Polar Codes

$$\mathbf{x} = \mathbf{v}\mathbf{G}_2 \qquad \qquad \mathbf{G}_2 = \left(\begin{array}{cc} 1 & 0\\ 1 & 1 \end{array}\right)$$

Polar Codes

$$\mathbf{x} = \mathbf{v}\mathbf{G}_2 \qquad \qquad \mathbf{G}_2 = \left(\begin{array}{cc} 1 & 0\\ 1 & 1 \end{array}\right)$$

Polar Codes

Denote $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{x} = (x_1, x_2, \dots, x_n)$. Then

 $\mathbf{x} = \mathbf{u}\mathbf{G}_n$

with \mathbf{G}_n being a $n \times n$ matrix with structure

 $\mathbf{G}_n = \mathbf{G}_2 \otimes \mathbf{G}_2 \otimes \ldots \otimes \mathbf{G}_2$

Polar Codes Example

With n = 8, $\mathbf{G}_8 = \mathbf{G}_2 \otimes \mathbf{G}_2 \otimes \mathbf{G}_2$

$$\mathbf{G}_8 = \left(\begin{array}{cccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{array}\right)$$

Polar Codes Example

 $p(\mathbf{y}|\mathbf{v}) = p(y_1|v_1 + v_2)p(y_2|v_2)$

$$p(\mathbf{y}|v_1) = \sum_{v_2} p(\mathbf{y}, v_2|v_1) = \frac{1}{2} \sum_{v_2} p(y_1|v_1 + v_2) p(y_2|v_2)$$

$$p(\mathbf{y}, v_1 | v_2) = p(\mathbf{y} | v_1, v_2) p(v_1) = \frac{1}{2} p(y_1 | v_1 + v_2) p(y_2 | v_2)$$

$$L'_{1} = 2 \tanh^{-1} \left(\tanh \left(\frac{L_{1}}{2} \right) \tanh \left(\frac{L_{2}}{2} \right) \right) \qquad \text{with} \qquad L_{i} = \log \frac{p(y_{i}|0)}{p(y_{i}|1)}$$

$$L_2' = L_2 + (-1)^{v_1} L_1$$

Polar Codes Successive Cancellation Decoding

Polar Codes Successive Cancellation Decoding

Polar Codes Successive Cancellation Decoding

Polar Codes Code Design

• (n,k) polar code: $\mathcal{A} = \text{set of } k \text{ indexed in } \{1,2,\ldots,n\}$

• Map the k information bits on u_i , $i \in \mathcal{A}$

²⁸E. Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels", IEEE Trans. Inf. Theory (2009)

²⁷N. Stolte, "Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung", PhD thesis (TU Darmstadt, 2002)

Polar Codes Code Design

• (n,k) polar code: $\mathcal{A} = \text{set of } k \text{ indexed in } \{1,2,\ldots,n\}$

• Map the k information bits on u_i , $i \in \mathcal{A}$

Set the remaining elements of u to 0 (frozen bits)

²⁸E. Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels", IEEE Trans. Inf. Theory (2009)

²⁷N. Stolte, "Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung", PhD thesis (TU Darmstadt, 2002)

Polar Codes Code Design

• (n,k) polar code: $\mathcal{A} = \text{set of } k \text{ indexed in } \{1,2,\ldots,n\}$

• Map the k information bits on u_i , $i \in \mathcal{A}$

- Set the remaining elements of **u** to 0 (frozen bits)
- Selection of the frozen bits: For the target channel, find the least n k reliable bits in u under successive cancellation decoding²⁷²⁸

²⁸E. Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels", IEEE Trans. Inf. Theory (2009)

²⁷N. Stolte, "Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung", PhD thesis (TU Darmstadt, 2002)

Polar Codes Example

•
$$(8,4)$$
 polar code: $\mathcal{A} = \{4,6,7,8\}$

$$\mathbf{G}_8 = \left(\begin{array}{ccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{array}\right)$$

Polar Codes Example

•
$$(8,4)$$
 polar code: $\mathcal{A} = \{4,6,7,8\}$

Polar Codes: Shortcomings

Albeit capacity-achieving (for large n), at moderate-short block lengths polar codes under successive cancellation decoding perform poorly

List decoding: Exploit the serial bit decision process to improve the SC decoder performance

.

List size L = 4

 \hat{u}_i

List size L = 4

. 0 .

 \hat{u}_i

List size L = 4

$$\hat{u}_i$$
 \hat{u}_{i+1} List size $L=4$

$$\hat{u}_i$$
 \hat{u}_{i+1} \hat{u}_{i+2} List size $L=4$

Discard the L/2 least likely paths

• After k steps, L codewords in the list \mathcal{L}

• After k steps, L codewords in the list \mathcal{L}

• After k steps, L codewords in the list \mathcal{L}

 \blacksquare Pick the codeword in $\mathcal L$ maximizing the likelihood

$$\hat{\mathbf{x}} = \arg\max_{\mathbf{x}\in\mathcal{L}} p\left(\mathbf{y}|\mathbf{x}\right)$$

Two error events:

 \blacksquare The correct codeword ${\bf x}$ is not in the list

Two error events:

- \blacksquare The correct codeword ${\bf x}$ is not in the list
- The correct codeword \mathbf{x} is in the list but $\exists \mathbf{x}' \in \mathcal{L}$ s.t. $p(\mathbf{y}|\mathbf{x}') > p(\mathbf{y}|\mathbf{x})$

Two error events:

- \blacksquare The correct codeword ${\bf x}$ is not in the list
- The correct codeword \mathbf{x} is in the list but $\exists \mathbf{x}' \in \mathcal{L}$ s.t. $p(\mathbf{y}|\mathbf{x}') > p(\mathbf{y}|\mathbf{x})$ The error would take place even with ML decoding...

Two error events:

- The correct codeword x is not in the list
- The correct codeword \mathbf{x} is in the list but $\exists \mathbf{x}' \in \mathcal{L}$ s.t. $p(\mathbf{y}|\mathbf{x}') > p(\mathbf{y}|\mathbf{x})$ The error would take place even with ML decoding...

Performance limited by distance spectrum

Concatenation with an outer code to improve distance spectrum

List decoding (inner code), followed by syndrome check with outer code

Concatenation with an outer code to improve distance spectrum

List decoding (inner code), followed by syndrome check with outer code
Expurgated list: all codewords not satisfying the check are removed

Concatenation with an outer code to improve distance spectrum

- List decoding (inner code), followed by syndrome check with outer code
- Expurgated list: all codewords not satisfying the check are removed
- Selection within the remaining codewords based on likelihood

Polar Codes Observations

- With successive cancellation + list decoding and the aid of an outer code, consistently close to the normal approximation
- Complexity growing with the list size L
- Large list size: close to maximum-likelihood performance (but large complexity)
- Error floor behavior only partially addressed²⁹
- Good trade-off between decoding complexity and performance

²⁹G. Ricciutelli et al., "On the error probability of short concatenated polar and cyclic codes with interleaving", arXiv preprint arXiv:1701.07262 (2017)

Outline

Motivations

Finite-blocklength performance bounds

Applications

Efficient Short Channel Codes

- Efficient Short Classical Codes: Tail-Biting Convolutional Codes
- Efficient Short Modern Codes: Turbo Codes
- Efficient Short Modern Codes: Binary Low-Density Parity-Check Codes
- Efficient Short Modern Codes: Polar Codes
- Two Case Studies
- Higher-Order Modulation

We use the model from

O. İşcan et al., "A Comparison of Channel Coding Schemes for 5G Short Message Transmission", in Proc. globecom (2016)

³⁰ Channel coding evaluation assumptions - performance and complexity, tech. rep. (Qualcomm Inc., Nanjing, China, May 2016), 3GPP TSG-RAN WG1 no. 85

We use the model from

O. İşcan et al., "A Comparison of Channel Coding Schemes for 5G Short Message Transmission", in Proc. globecom (2016)

 Another good reference with a detailed comparison of (binary) LDPC, Turbo and Polar codes is ³⁰.

³⁰ Channel coding evaluation assumptions - performance and complexity, tech. rep. (Qualcomm Inc., Nanjing, China, May 2016), 3GPP TSG-RAN WG1 no. 85

Complexity

Complexity

Complexity

Complete vs. Incomplete: Some Observations on Error Detection

Code Family	Decoding Algorithm	Complete/Incomplete
TBCC	WAVA	"Almost" complete
Linear Block	OSD	Complete
Polar+CRC	List	"Almost" complete for large lists
LDPCC	BP	Incomplete
Turbo	BP	Complete?

Outline

Motivations

Finite-blocklength performance bounds

Applications

Efficient Short Channel Codes

Higher-Order Modulation

- Introduction to Higher-Order Modulation
- Probabilistic Shaping
- Non-Binary LDPC Codes
- Binary LDPC Codes
- Polar Codes
- Case Study
- Conclusion

Outline

Motivations

Finite-blocklength performance bounds

Applications

Efficient Short Channel Codes

Higher-Order Modulation

- Introduction to Higher-Order Modulation
- Probabilistic Shaping
- Non-Binary LDPC Codes
- Binary LDPC Codes
- Polar Codes
- Case Study
- Conclusion

System Model

• Channel code with rate $R_{c} = k/n_{c}$, blocklength n_{c} bits.

- Channel code with rate $R_{\rm c} = k/n_{\rm c}$, blocklength $n_{\rm c}$ bits.
- Additive White Gaussian Noise (AWGN) channel with M = 2^m-ary discrete input.

- Channel code with rate $R_{\rm c} = k/n_{\rm c}$, blocklength $n_{\rm c}$ bits.
- Additive White Gaussian Noise (AWGN) channel with $M = 2^{m}$ -ary discrete input.
- Optimal signaling strategy to achieve capacity, i.e., $\log_2(1 + snr)$, requires Gaussian distributed inputs.

- Channel code with rate $R_{\rm c} = k/n_{\rm c}$, blocklength $n_{\rm c}$ bits.
- Additive White Gaussian Noise (AWGN) channel with $M = 2^{m}$ -ary discrete input.
- Optimal signaling strategy to achieve capacity, i.e., $\log_2(1 + snr)$, requires Gaussian distributed inputs.
- Transmission rate: $R = R_c m$ (bits/per channel use).

Discrete Signaling (I)

• We use $M = 2^m$ -quadrature amplitude (QAM) constellations \mathcal{X} .

Discrete Signaling (I)

• We use $M = 2^m$ -quadrature amplitude (QAM) constellations \mathcal{X} .

 $\mathcal{X} = \{-(M-1) - \mathbf{j}(M-1), -(M-1) - \mathbf{j}(M-2), \dots (M-1) + \mathbf{j}(M-1)\}$

Binary labeling $\chi : \mathcal{X} \to \{0,1\}^m$, e.g., Binary Reflected Gray Code (BRGC), $\chi(-3+3j) = 0001$.

Higher-Order Modulation Decoding Metrics

• The decoder uses a metric $q(x, y) : \mathcal{X}^n \times \mathcal{Y}^n \to \mathbb{R}^+$ to estimate the sent codeword from the observation:

$$\hat{\boldsymbol{c}} = \operatorname*{arg\,max}_{\boldsymbol{c}\in\mathcal{C}} q(\chi^{-1}(\boldsymbol{c}), \boldsymbol{y})$$

We distinguish between symbol-metric decoding (SMD) and bit-metric decoding (BMD).

• SMD:

$$q(\boldsymbol{x}, \boldsymbol{y}) = \prod_{j=1}^{n} p_{Y|X}(y_j|x_j)$$

• BMD:

$$q(\boldsymbol{x}, \boldsymbol{y}) = \prod_{j=1}^{n} \prod_{i=1}^{m} p_{Y|B_i}(y_j|b_{ji})$$

with $p_{Y|B_i}(y|b) = \sum_{x \in \mathcal{X}_i^b} p_{Y|X}(y|x) \text{ and } \mathcal{X}_i^b = \{x \in \mathcal{X} \colon [\chi(x)]_i = b\}.$

Achievable Rates: Overview

$$q(\boldsymbol{x}, \boldsymbol{y}) = \prod_{j=1}^{n} p_{Y|X}(y_j|x_j)$$

Achievable rate is the mutual information:

$$R_{\mathsf{a}} = \mathrm{I}(X;Y).$$

 Relevant metric usually for non-binary codes and multilevel coding.

$$q(\boldsymbol{x}, \boldsymbol{y}) = \prod_{j=1}^{n} \prod_{i=1}^{m} p_{Y|B_i}(y_j|b_{ji})$$

Achievable rate is the "BICM capacity"

$$R_{\mathsf{a}} = \sum_{i=1}^{m} \mathrm{I}(B_i; Y).$$

Relevant metric for binary codes, when each bit-level is treated independently at the receiver.

Achievable Rates: Numerical Example

Achievable Rates: Numerical Example

Outline

Motivations

Finite-blocklength performance bounds

Applications

Efficient Short Channel Codes

Higher-Order Modulation

- Introduction to Higher-Order Modulation
- Probabilistic Shaping
- Non-Binary LDPC Codes
- Binary LDPC Codes
- Polar Codes
- Case Study
- Conclusion

Approaching Capacity with Discrete Signaling The Last dB

Discrete signaling with M uniformly distributed, equi-spaced constellation points is suboptimal for the AWGN channel under an average power constraint.

Approaching Capacity with Discrete Signaling The Last dB

- Discrete signaling with M uniformly distributed, equi-spaced constellation points is suboptimal for the AWGN channel under an average power constraint.
- For $M \to \infty$, loss in power efficiency may increase up to 1.53 dB in the high SNR regime.

Approaching Capacity with Discrete Signaling The Last dB

- Discrete signaling with M uniformly distributed, equi-spaced constellation points is suboptimal for the AWGN channel under an average power constraint.
- For $M \to \infty$, loss in power efficiency may increase up to 1.53 dB in the high SNR regime.
- How to solve this problem? Follow Shannon's 1948 blueprint.

 $C = \max_{p_X} \quad I(X;Y) \quad \text{subject to "} p_X \text{ is permissible"}$

Approaching Capacity with Discrete Signaling The Last dB

- Discrete signaling with M uniformly distributed, equi-spaced constellation points is suboptimal for the AWGN channel under an average power constraint.
- For $M \to \infty$, loss in power efficiency may increase up to 1.53 dB in the high SNR regime.
- How to solve this problem? Follow Shannon's 1948 blueprint.

 $C = \max_{p_X} \quad I(X;Y) \quad \text{subject to "} p_X \text{ is permissible"}$

Impose non-uniform distribution on the constellation points.

• The difficult aspect of non-uniform signaling is its integration with FEC.

³³G. Böcherer et al., "Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation", IEEE Trans. Commun. 63, 4651–4665 (2015)

³¹R. G. Gallager, Information Theory and Reliable Communication, (John Wiley & Sons, Inc., 1968)

³²G. D. Forney, "Trellis shaping", IEEE Trans. Inf. Theory **38**, 281–300 (1992)

- The difficult aspect of non-uniform signaling is its integration with FEC.
- Straightforward approaches suffer from error propagation, synchronization issues or complex joint FEC/shaping code decoding^{31,32}.

³³G. Böcherer et al., "Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation", IEEE Trans. Commun. 63, 4651–4665 (2015)

³¹R. G. Gallager, Information Theory and Reliable Communication, (John Wiley & Sons, Inc., 1968)

³²G. D. Forney, "Trellis shaping", IEEE Trans. Inf. Theory 38, 281–300 (1992)

- The difficult aspect of non-uniform signaling is its integration with FEC.
- Straightforward approaches suffer from error propagation, synchronization issues or complex joint FEC/shaping code decoding^{31,32}.
- Recent approach: Probabilistic amplitude shaping (PAS)³³ uses reverse concatenation.

³³G. Böcherer et al., "Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation", IEEE Trans. Commun. 63, 4651–4665 (2015)

³¹R. G. Gallager, Information Theory and Reliable Communication, (John Wiley & Sons, Inc., 1968)

³²G. D. Forney, "Trellis shaping", IEEE Trans. Inf. Theory 38, 281–300 (1992)

- The difficult aspect of non-uniform signaling is its integration with FEC.
- Straightforward approaches suffer from error propagation, synchronization issues or complex joint FEC/shaping code decoding^{31,32}.
- Recent approach: Probabilistic amplitude shaping (PAS)³³ uses reverse concatenation.

PAS requires: Symmetric input distribution, systematic FEC encoding.

³³G. Böcherer et al., "Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation", IEEE Trans. Commun. 63, 4651–4665 (2015)

³¹R. G. Gallager, Information Theory and Reliable Communication, (John Wiley & Sons, Inc., 1968)

³²G. D. Forney, "Trellis shaping", IEEE Trans. Inf. Theory 38, 281–300 (1992)

Probabilistic Amplitude Shaping (PAS) Achievable Rates

■ An achievable rate for the considered scheme is³⁴:

$$R_{\mathsf{a}} = \left[\mathrm{H}(X) - \mathrm{E}\left[-\log_2\left(\frac{q(X,Y)}{\sum_{x \in \mathcal{X}} q(x,Y)}\right) \right] \right]^+$$

 \blacksquare q(x, y) is the previously introduced decoding metric, e.g.,

³⁴G. Böcherer, "Achievable Rates for Probabilistic Shaping", arXiv:1707.01134v5 (2018)

Probabilistic Amplitude Shaping (PAS) Achievable Rates

An achievable rate for the considered scheme is³⁴:

$$R_{\mathsf{a}} = \left[\mathrm{H}(X) - \mathrm{E}\left[-\log_2\left(\frac{q(X,Y)}{\sum_{x \in \mathcal{X}} q(x,Y)}\right) \right] \right]^+$$

 $\hfill q(x,y)$ is the previously introduced decoding metric, e.g.,

SMD: $q(x, y) = P_{X|Y}(x|y)$ $R_{SMD} = I(X; Y)$

³⁴G. Böcherer, "Achievable Rates for Probabilistic Shaping", arXiv:1707.01134v5 (2018)

Probabilistic Amplitude Shaping (PAS) Achievable Rates

■ An achievable rate for the considered scheme is³⁴:

$$R_{a} = \left[\mathrm{H}(X) - \mathrm{E}\left[-\log_{2}\left(\frac{q(X,Y)}{\sum_{x \in \mathcal{X}} q(x,Y)}\right) \right] \right]^{+}$$

 \blacksquare q(x, y) is the previously introduced decoding metric, e.g.,

SMD:
$$q(x,y) = P_{X|Y}(x|y)$$

 $R_{SMD} = I(X;Y)$
 $R_{BMD} = \left[H(X) - \sum_{i=1}^{m} H(B_i|Y)\right]^+$

³⁴G. Böcherer, "Achievable Rates for Probabilistic Shaping", arXiv:1707.01134v5 (2018)

Probabilistic Amplitude Shaping (PAS)

The shaping gap has vanished

PAS operates at the Shannon limit for SMD and BMD.

Outline

Motivations

Finite-blocklength performance bounds

Applications

Efficient Short Channel Codes

Higher-Order Modulation

- Introduction to Higher-Order Modulation
- Probabilistic Shaping
- Non-Binary LDPC Codes
- Binary LDPC Codes
- Polar Codes
- Case Study
- Conclusion

Straightforward approach for higher-order modulation: Use non-binary code over a field F_q that matches the constellation size, i.e., M = q.

- Straightforward approach for higher-order modulation: Use non-binary code over a field \mathbb{F}_q that matches the constellation size, i.e., M = q.
- For practical implementations the field size q is a binary extension field such that $q = 2^p$.

- Straightforward approach for higher-order modulation: Use non-binary code over a field \mathbb{F}_q that matches the constellation size, i.e., M = q.
- For practical implementations the field size q is a binary extension field such that $q = 2^p$.
- We can also combine a sequence of $\ell \ 2^m\text{-}\mathsf{QAM}$ symbols with a code over $\mathbb{F}_q,$ if

$$\ell \cdot m \stackrel{!}{=} p$$

Examples:

- Straightforward approach for higher-order modulation: Use non-binary code over a field \mathbb{F}_q that matches the constellation size, i.e., M = q.
- For practical implementations the field size q is a binary extension field such that $q = 2^p$.
- We can also combine a sequence of $\ell 2^m$ -QAM symbols with a code over \mathbb{F}_q , if

$$\ell \cdot m \stackrel{!}{=} p$$

Examples:

$$\begin{tabular}{ll} $ \ell=2$ 16-QAM symbols with \mathbb{F}_{256}. \\ $ \ell=3$ 8-QAM symbols with \mathbb{F}_{512}. \\ $ \dots$ \end{tabular} \end{tabular}$$

Non-Binary LDPC Codes

Decoding: Uniform case

- We introduce a mapping $\beta_{\mathcal{X}} : \mathcal{X}^{\ell} \to \mathbb{F}_q$. Its inverse is defined analogously.
- For the *i*-th variable node, the NB-LDPC decoder is provided with the soft-information vector $P_i = (P_i(0), P_i(1), P_i(\alpha), \dots, P_i(\alpha^{q-2}))$ where

$$P_i(c) \propto \prod_{j=1}^{\ell} p_{Y|X}(y_j | [\beta_{\mathcal{X}}^{-1}(c)]_j)$$

³⁵F. Steiner et al., "Ultra-Sparse Non-Binary LDPC Codes for Probabilistic Amplitude Shaping", in Proc. IEEE Global Telecommun. Conf. (GLOBECOM) (Dec. 2017), pp. 1–5

Non-Binary LDPC Codes

Decoding: Uniform case

- We introduce a mapping $\beta_{\mathcal{X}} : \mathcal{X}^{\ell} \to \mathbb{F}_q$. Its inverse is defined analogously.
- For the *i*-th variable node, the NB-LDPC decoder is provided with the soft-information vector $P_i = (P_i(0), P_i(1), P_i(\alpha), \dots, P_i(\alpha^{q-2}))$ where

$$P_i(c) \propto \prod_{j=1}^{\ell} p_{Y|X}(y_j | [\beta_{\mathcal{X}}^{-1}(c)]_j)$$

■ For PAS, similar expressions can be derived³⁵.

³⁵F. Steiner et al., "Ultra-Sparse Non-Binary LDPC Codes for Probabilistic Amplitude Shaping", in Proc. IEEE Global Telecommun. Conf. (GLOBECOM) (Dec. 2017), pp. 1–5

Non-Binary LDPC Codes

Decoding: Uniform case

- We introduce a mapping $\beta_{\mathcal{X}} : \mathcal{X}^{\ell} \to \mathbb{F}_q$. Its inverse is defined analogously.
- For the *i*-th variable node, the NB-LDPC decoder is provided with the soft-information vector $P_i = (P_i(0), P_i(1), P_i(\alpha), \dots, P_i(\alpha^{q-2}))$ where

$$P_i(c) \propto \prod_{j=1}^{\ell} p_{Y|X}(y_j | [\beta_{\mathcal{X}}^{-1}(c)]_j)$$

- For PAS, similar expressions can be derived³⁵.
- Achievable rate is the mutual information I(X; Y).

³⁵F. Steiner et al., "Ultra-Sparse Non-Binary LDPC Codes for Probabilistic Amplitude Shaping", in Proc. IEEE Global Telecommun. Conf. (GLOBECOM) (Dec. 2017), pp. 1–5

Outline

Motivations

Finite-blocklength performance bounds

Applications

Efficient Short Channel Codes

Higher-Order Modulation

- Introduction to Higher-Order Modulation
- Probabilistic Shaping
- Non-Binary LDPC Codes
- Binary LDPC Codes
- Polar Codes
- Case Study
- Conclusion

 Binary LDPC codes are usually operated in a "BICM fashion" for higher-order modulation, i.e., BMD is performed.

- Binary LDPC codes are usually operated in a "BICM fashion" for higher-order modulation, i.e., BMD is performed.
- The input to the LDPC decoder is the soft-information

$$\ell_{ji} = \log\left(\frac{P_{B_i|X}(0|y_j)}{P_{B_i|X}(1|y_j)}\right) = \log\left(\frac{\sum_{x \in \mathcal{X}_i^0} p_{Y|X}(y_j|x) P_X(x)}{\sum_{x \in \mathcal{X}_j^1} p_{Y|X}(y_j|x) P_X(x)}\right),$$

for $j = 1, \ldots, n$ and $i = 1, \ldots, m$.

- Binary LDPC codes are usually operated in a "BICM fashion" for higher-order modulation, i.e., BMD is performed.
- The input to the LDPC decoder is the soft-information

$$\ell_{ji} = \log\left(\frac{P_{B_i|X}(0|y_j)}{P_{B_i|X}(1|y_j)}\right) = \log\left(\frac{\sum_{x \in \mathcal{X}_i^0} p_{Y|X}(y_j|x) P_X(x)}{\sum_{x \in \mathcal{X}_j^1} p_{Y|X}(y_j|x) P_X(x)}\right),$$

for $j = 1, \ldots, n$ and $i = 1, \ldots, m$.

Most practically relevant and standardized LDPC codes are quasi-cyclic and allow a protograph representation.

- Binary LDPC codes are usually operated in a "BICM fashion" for higher-order modulation, i.e., BMD is performed.
- The input to the LDPC decoder is the soft-information

$$\ell_{ji} = \log\left(\frac{P_{B_i|X}(0|y_j)}{P_{B_i|X}(1|y_j)}\right) = \log\left(\frac{\sum_{x \in \mathcal{X}_i^0} p_{Y|X}(y_j|x) P_X(x)}{\sum_{x \in \mathcal{X}_j^1} p_{Y|X}(y_j|x) P_X(x)}\right),$$

for $j = 1, \ldots, n$ and $i = 1, \ldots, m$.

- Most practically relevant and standardized LDPC codes are quasi-cyclic and allow a protograph representation.
- Most codes have a irregular variable node degree profile as they are superior to the regular counterparts.

Binary LDPC Codes Distribution of the Log-Likelihood Ratios

8-ASK uniform, 14 dB, Binary Reflected Gray Code, Bit-Level 1

Binary LDPC Codes Distribution of the Log-Likelihood Ratios

8-ASK uniform, 14 dB, Binary Reflected Gray Code, Bit-Level 2

Binary LDPC Codes Distribution of the Log-Likelihood Ratios

8-ASK uniform, 14 dB, Binary Reflected Gray Code, Bit-Level 3

Quality of Bit-Levels: Bitwise mutual information $I(B_i; Y)$

8-ASK uniform

P-EXIT extends traditional EXIT approach³⁶ to protographs.

P-EXIT extends traditional EXIT approach³⁶ to protographs.

• Consider protograph base matrix $B \in \mathbb{N}^{m_{p} \times n_{p}}$.

³⁶G. Liva and M. Chiani, "Protograph LDPC Codes Design Based on EXIT Analysis", in IEEE Global Telecommun. Conf. (GLOBECOM) (Nov. 2007), pp. 3250–3254

- P-EXIT extends traditional EXIT approach³⁶ to protographs.
- Consider protograph base matrix $B \in \mathbb{N}^{m_{\mathsf{p}} \times n_{\mathsf{p}}}$.
- Assign to each variable node one of the *m* different bit levels, i.e., a number of n_p/m variable nodes "see" the same bit channel.

- P-EXIT extends traditional EXIT approach³⁶ to protographs.
- Consider protograph base matrix $B \in \mathbb{N}^{m_{\mathsf{p}} \times n_{\mathsf{p}}}$.
- Assign to each variable node one of the *m* different bit levels, i.e., a number of n_p/m variable nodes "see" the same bit channel.
- P-EXIT is used to track the reliability of the exchanged messages.

- P-EXIT extends traditional EXIT approach³⁶ to protographs.
- Consider protograph base matrix $B \in \mathbb{N}^{m_{\mathsf{p}} \times n_{\mathsf{p}}}$.
- Assign to each variable node one of the *m* different bit levels, i.e., a number of n_p/m variable nodes "see" the same bit channel.
- P-EXIT is used to track the reliability of the exchanged messages.
- P-EXIT was derived for the BEC and the biAWGN channel. How to use it for our scenario?

Binary LDPC Codes Surrogate Parameter Design

Obtaining the surrogate parameters

Which information theoretic quantity should be used to relate the real bit channels $p_{L_i|B_i}$ to the surrogate channel parameter?

³⁸G. Böcherer, "Achievable Rates for Probabilistic Shaping", arXiv:1707.01134v5 (2018)

³⁷F. Steiner et al., "Protograph-Based LDPC Code Design for Shaped Bit-Metric Decoding", IEEE J. Sel. Areas Commun. 34, 397–407 (2016)

Surrogate Parameter Design

Obtaining the surrogate parameters

Which information theoretic quantity should be used to relate the real bit channels $p_{L_i|B_i}$ to the surrogate channel parameter?

It turns out^{37,38}: It's the channel uncertainty.

$$\mathbb{E}\left[-\log_2\left(\frac{q(X,Y)}{\sum_{x\in\mathcal{X}}q(x,Y)}\right)\right]$$

³⁸G. Böcherer, "Achievable Rates for Probabilistic Shaping", arXiv:1707.01134v5 (2018)

³⁷F. Steiner et al., "Protograph-Based LDPC Code Design for Shaped Bit-Metric Decoding", IEEE J. Sel. Areas Commun. 34, 397–407 (2016)

Surrogate Parameter Design

Obtaining the surrogate parameters

Which information theoretic quantity should be used to relate the real bit channels $p_{L_i|B_i}$ to the surrogate channel parameter?

It turns out^{37,38}: It's the channel uncertainty.

$$\mathbf{E}\left[-\log_2\left(\frac{q(X,Y)}{\sum_{x\in\mathcal{X}}q(x,Y)}\right)\right] \stackrel{\text{soft BMD}}{=} \sum_{i=1}^m \mathbf{H}(B_i|Y)$$

³⁸G. Böcherer, "Achievable Rates for Probabilistic Shaping", arXiv:1707.01134v5 (2018)

³⁷F. Steiner et al., "Protograph-Based LDPC Code Design for Shaped Bit-Metric Decoding", IEEE J. Sel. Areas Commun. 34, 397–407 (2016)

Surrogate Parameter Design

Obtaining the surrogate parameters

Which information theoretic quantity should be used to relate the real bit channels $p_{L_i|B_i}$ to the surrogate channel parameter?

It turns out^{37,38}: It's the channel uncertainty.

$$\mathbf{E}\left[-\log_2\left(\frac{q(X,Y)}{\sum_{x\in\mathcal{X}}q(x,Y)}\right)\right] \stackrel{\text{soft BMD}}{=} \sum_{i=1}^m \mathbf{H}(B_i|Y)$$

The biAWGN surrogate parameters are therefore given by

$$\sigma_{\mathsf{ch}_i}: \mathrm{H}(B_i|Y) = \mathrm{H}(\tilde{X}|\tilde{Y}), \text{ where } \tilde{Y} = \tilde{X} + N_i \text{ and } N_i \sim \mathcal{N}(0, \sigma_{\mathsf{ch}_i}^2).$$

³⁸G. Böcherer, "Achievable Rates for Probabilistic Shaping", arXiv:1707.01134v5 (2018)

³⁷F. Steiner et al., "Protograph-Based LDPC Code Design for Shaped Bit-Metric Decoding", IEEE J. Sel. Areas Commun. 34, 397–407 (2016)

Outline

Motivations

Finite-blocklength performance bounds

Applications

Efficient Short Channel Codes

Higher-Order Modulation

- Introduction to Higher-Order Modulation
- Probabilistic Shaping
- Non-Binary LDPC Codes
- Binary LDPC Codes
- Polar Codes
- Case Study
- Conclusion

Polar Codes Decoding Metric

 Because of SC decoding, the most "natural" way for higher-order modulation is a multilevel coding/multistage decoding approach³⁹.

³⁹H. Imai and S. Hirakawa, "A new multilevel coding method using error-correcting codes", IEEE Trans. Inf. Theory 23, 371–377 (1977)

Polar Codes Decoding Metric

- Because of SC decoding, the most "natural" way for higher-order modulation is a multilevel coding/multistage decoding approach³⁹.
- This builds heavily on using the chain rule of mutual information:

$$I(X;Y) = I(B;Y) = I(B_1;Y) + I(B_2;Y|B_1) + \dots + I(B_m;Y|B_1\dots B_{m-1})$$
$$= \sum_{i=1}^m I(B_i;Y|B_1^{m-1})$$

³⁹H. Imai and S. Hirakawa, "A new multilevel coding method using error-correcting codes", IEEE Trans. Inf. Theory 23, 371–377 (1977)

Polar Codes Decoding Metric

- Because of SC decoding, the most "natural" way for higher-order modulation is a multilevel coding/multistage decoding approach³⁹.
- This builds heavily on using the chain rule of mutual information:

$$I(X;Y) = I(B;Y) = I(B_1;Y) + I(B_2;Y|B_1) + \dots + I(B_m;Y|B_1\dots B_{m-1})$$
$$= \sum_{i=1}^m I(B_i;Y|B_1^{m-1})$$

Polar codes with multilevel coding/multistage decoding do not suffer from a "BICM loss".

³⁹H. Imai and S. Hirakawa, "A new multilevel coding method using error-correcting codes", IEEE Trans. Inf. Theory 23, 371–377 (1977)

Polar Codes Set-Partition Labeling

Seidl et al.⁴⁰ showed that a set-partition (SP) labeling is best for polar codes and higher-order modulation (improves polarization).

⁴⁰M. Seidl et al., "Polar-Coded Modulation", IEEE Trans. Commun. **61**, 4108–4119 (2013)

Example: 8-ASK, m = 3.

 Construction with Gaussian approximation and biAWGN surrogate channels⁴¹.

⁴¹G. Böcherer et al., "Efficient Polar Code Construction for Higher-Order Modulation", in IEEE Wireless Commun. Netw. Conf. (WCNC) (Mar. 2017)

- Construction with Gaussian approximation and biAWGN surrogate channels⁴¹.
- The variance of the *i*-th biAWGN surrogate channel is

$$\sigma_i^2 = \mathsf{C}_{\mathsf{biAWGN}}^{-1}(\mathrm{I}(B_i;Y|B_1^{i-1})), \text{ where }$$

$$I(B_i; Y|B_1^{i-1}) = \int_{-\infty}^{\infty} \sum_{b_1 \dots b_i \in \{0,1\}^i} p_{YB_1 \dots B_i}(y, b_1 \dots b_i) \\ \cdot \log_2 \left(\frac{p_{Y|B_1 \dots B_i}(y|b_1 \dots b_i)}{p_{Y|B_1 \dots B_{i-1}}(y|b_1 \dots b_{i-1})} \right) dy$$

⁴¹G. Böcherer et al., "Efficient Polar Code Construction for Higher-Order Modulation", in IEEE Wireless Commun. Netw. Conf. (WCNC) (Mar. 2017)

Run the construction for each sub code separately.

⁴²T. Prinz et al., "Polar Coded Probabilistic Amplitude Shaping for Short Packets", in IEEE Int. Workshop Signal Process. Advances Wireless Commun. (SPAWC) (2017)

Run the construction for each sub code separately.

• Stack the reliability vectors in $I_{out} = (I_{out,1}, I_{out,2}, I_{out,3}).$

⁴²T. Prinz et al., "Polar Coded Probabilistic Amplitude Shaping for Short Packets", in IEEE Int. Workshop Signal Process. Advances Wireless Commun. (SPAWC) (2017)

Run the construction for each sub code separately.

- Stack the reliability vectors in $I_{out} = (I_{out,1}, I_{out,2}, I_{out,3}).$
- The frozen bit indices are the worst $(n_c k_c)$ bit channels in I_{out} .

⁴²T. Prinz et al., "Polar Coded Probabilistic Amplitude Shaping for Short Packets", in IEEE Int. Workshop Signal Process. Advances Wireless Commun. (SPAWC) (2017)

Run the construction for each sub code separately.

- Stack the reliability vectors in $I_{out} = (I_{out,1}, I_{out,2}, I_{out,3}).$
- The frozen bit indices are the worst $(n_{c} k_{c})$ bit channels in I_{out} .
- Construction for PAS is detailed in⁴².

⁴²T. Prinz et al., "Polar Coded Probabilistic Amplitude Shaping for Short Packets", in IEEE Int. Workshop Signal Process. Advances Wireless Commun. (SPAWC) (2017)

$$\ell_{j1} = \log \left(\frac{P_{B_1|Y}(0|y_j)}{P_{B_1|Y}(1|y_j)} \right)$$

$$\ell_{j1} = \log\left(\frac{P_{B_1|Y}(0|y_j)}{P_{B_1|Y}(1|y_j)}\right) \Longrightarrow \hat{b}_{j1}$$

$$\begin{split} \ell_{j1} &= & \log\left(\frac{P_{B_{1}|Y}(0|y_{j})}{P_{B_{1}|Y}(1|y_{j})}\right) \Longrightarrow \hat{b}_{j1} \\ \ell_{j2} &= & \log\left(\frac{P_{B_{2}|YB_{1}}(0|y_{j},\hat{b}_{j1})}{P_{B_{2}|YB_{1}}(1|y_{j},\hat{b}_{j1})}\right) \end{split}$$

$$\ell_{j1} = \log\left(\frac{P_{B_1|Y}(0|y_j)}{P_{B_1|Y}(1|y_j)}\right) \Longrightarrow \hat{b}_{j1}$$
$$\ell_{j2} = \log\left(\frac{P_{B_2|YB_1}(0|y_j, \hat{b}_{j1})}{P_{B_2|YB_1}(1|y_j, \hat{b}_{j1})}\right) \Longrightarrow \hat{b}_{j2}$$

Polar Codes Decoding

SC Decoding: Each sub-code is decoded one after the other, using the previously calculated hard estimates for the conditioning:

$$\ell_{j1} = \log\left(\frac{P_{B_{1}|Y}(0|y_{j})}{P_{B_{1}|Y}(1|y_{j})}\right) \Longrightarrow \hat{b}_{j1}$$

$$\ell_{j2} = \log\left(\frac{P_{B_{2}|YB_{1}}(0|y_{j},\hat{b}_{j1})}{P_{B_{2}|YB_{1}}(1|y_{j},\hat{b}_{j1})}\right) \Longrightarrow \hat{b}_{j2}$$

$$\ell_{j3} = \log\left(\frac{P_{B_{3}|YB_{1}B_{2}}(0|y_{j},\hat{b}_{j1}\hat{b}_{j2})}{P_{B_{3}|YB_{1}B_{2}}(1|y_{j},\hat{b}_{j1}\hat{b}_{j2})}\right)$$

Polar Codes Decoding

SC Decoding: Each sub-code is decoded one after the other, using the previously calculated hard estimates for the conditioning:

$$\ell_{j1} = \log\left(\frac{P_{B_{1}|Y}(0|y_{j})}{P_{B_{1}|Y}(1|y_{j})}\right) \Longrightarrow \hat{b}_{j1}$$
$$\ell_{j2} = \log\left(\frac{P_{B_{2}|YB_{1}}(0|y_{j},\hat{b}_{j1})}{P_{B_{2}|YB_{1}}(1|y_{j},\hat{b}_{j1})}\right) \Longrightarrow \hat{b}_{j2}$$
$$\ell_{j3} = \log\left(\frac{P_{B_{3}|YB_{1}B_{2}}(0|y_{j},\hat{b}_{j1}\hat{b}_{j2})}{P_{B_{3}|YB_{1}B_{2}}(1|y_{j},\hat{b}_{j1}\hat{b}_{j2})}\right) \Longrightarrow \hat{b}_{j3}$$

Polar Codes Decoding

SC Decoding: Each sub-code is decoded one after the other, using the previously calculated hard estimates for the conditioning:

$$\begin{split} \ell_{j1} &= \log\left(\frac{P_{B_1|Y}(0|y_j)}{P_{B_1|Y}(1|y_j)}\right) \Longrightarrow \hat{b}_{j1} \\ \ell_{j2} &= \log\left(\frac{P_{B_2|YB_1}(0|y_j, \hat{b}_{j1})}{P_{B_2|YB_1}(1|y_j, \hat{b}_{j1})}\right) \Longrightarrow \hat{b}_{j2} \\ \ell_{j3} &= \log\left(\frac{P_{B_3|YB_1B_2}(0|y_j, \hat{b}_{j1}\hat{b}_{j2})}{P_{B_3|YB_1B_2}(1|y_j, \hat{b}_{j1}\hat{b}_{j2})}\right) \Longrightarrow \hat{b}_{j3} \end{split}$$

 SCL Decoding: As before, but from bit-level 2 on, we additionally pass a list to the next level. CRC is evaluated over all bit-levels.

Outline

Motivations

Finite-blocklength performance bounds

Applications

Efficient Short Channel Codes

Higher-Order Modulation

- Introduction to Higher-Order Modulation
- Probabilistic Shaping
- Non-Binary LDPC Codes
- Binary LDPC Codes
- Polar Codes
- Case Study
- Conclusion

We investigate the following codes for a target SE of 3 bpcu with 64-QAM and n = 32 channel uses (i.e., $n_c = 192$ bits):

We investigate the following codes for a target SE of 3 bpcu with 64-QAM and n = 32 channel uses (i.e., $n_c = 192$ bits):

Binary LDPC:

- 5G BG2, $R_c = 1/2$ (uniform)
- \circ 5G BG1, $R_c = 3/4$ (PAS with CCDM and SMDM)

We investigate the following codes for a target SE of 3 bpcu with 64-QAM and n = 32 channel uses (i.e., $n_c = 192$ bits):

- Binary LDPC:
 - 5G BG2, $R_c = 1/2$ (uniform)
 - \circ 5G BG1, $R_c = 3/4$ (PAS with CCDM and SMDM)
- Binary Polar:
 - $R_{c} = 1/2, L = 32$, 8-CRC (uniform)
 - $R_{c} = 3/4, L = 32$, 4-CRC (PAS with CCDM and type check)

We investigate the following codes for a target SE of 3 bpcu with 64-QAM and n = 32 channel uses (i.e., $n_c = 192$ bits):

- Binary LDPC:
 - 5G BG2, $R_c = 1/2$ (uniform)
 - \circ 5G BG1, $R_c = 3/4$ (PAS with CCDM and SMDM)
- Binary Polar:
 - $R_{c} = 1/2, L = 32$, 8-CRC (uniform)
 - $\circ~R_{\rm c}=3/4, L=32,$ 4-CRC (PAS with CCDM and type check)

Non-Binary LDPC

- Ultra-Sparse GF(64), $R_c = 1/2$ (uniform)
- Ultra-Sparse GF(256), $R_c = 2/3$ (PAS with CCDM and SMDM)

Case Study 64-QAM uniform, n = 32, $\eta = 3$ bpcu

Case Study 64-QAM PAS, n = 32, $\eta = 3$ bpcu

Outline

Motivations

Finite-blocklength performance bounds

Applications

Efficient Short Channel Codes

Higher-Order Modulation

- Introduction to Higher-Order Modulation
- Probabilistic Shaping
- Non-Binary LDPC Codes
- Binary LDPC Codes
- Polar Codes
- Case Study
- Conclusion

 Higher-order modulation requires to be aware of the decoding metrics, their (sub-)optimality and the incurred losses.

- Higher-order modulation requires to be aware of the decoding metrics, their (sub-)optimality and the incurred losses.
- Probabilistic Amplitude Shaping (PAS) closes the gap to the Shannon limit, allows flexibility in SE with one modcod and has virtually no BMD loss.

- Higher-order modulation requires to be aware of the decoding metrics, their (sub-)optimality and the incurred losses.
- Probabilistic Amplitude Shaping (PAS) closes the gap to the Shannon limit, allows flexibility in SE with one modcod and has virtually no BMD loss.
- Tailored design for higher-order modulation is possible, but requires adjusted tools.

- Higher-order modulation requires to be aware of the decoding metrics, their (sub-)optimality and the incurred losses.
- Probabilistic Amplitude Shaping (PAS) closes the gap to the Shannon limit, allows flexibility in SE with one modcod and has virtually no BMD loss.
- Tailored design for higher-order modulation is possible, but requires adjusted tools.
- Polar Codes show very good performance in the short blocklength regime also for higher-order modulation.

